Mathematics

If $$2\displaystyle \int_{0}^{1}\tan^{-1}xdx=\displaystyle \int_{0}^{1}\cot^{-1}(1-x+x^{2})dx$$, then $$\displaystyle \int_{0}^{1}\tan^{-1}(1-x+x^{2})dx$$ is equal to: 


ANSWER

$$\log 4$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Find:
$$\displaystyle \int \dfrac {xe^{x}}{(1+x)^{2}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$I = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{\sin x}}{x}dx} $$, then
  • A. $$\frac{1}{2} \le I \le 1$$
  • B. $$4 \le I \le 2\sqrt {30} $$
  • C. $$1 \le I \le \frac{{2\sqrt 3 }}{{\sqrt 2 }}$$
  • D. $$\frac{{\sqrt 3 }}{8} \le I \le \frac{{\sqrt 2 }}{6}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int\frac{e^{x}}{(2e^{x}-3)^{2}}dx=$$
  • A. $$ \displaystyle \frac{1}{2e^{x}-3}+c$$
  • B. $$\displaystyle \frac{1}{2(2e^{x}-3)^{2}}+c$$
  • C. $$\displaystyle \frac{1}{(2e^{x}-3)^{2}}+c$$
  • D. $$\displaystyle \frac{-1}{2(2e^{x}-3)}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Solve $$\int x ^ { 2 } \cos x dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int { \dfrac { dx }{ \sqrt { 9x+4{ x }^{ 2 } }  }  }$$ equals
  • A. $$\dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 8x-9 }{ 9 } \right) +C }$$
  • B. $$\dfrac { 1 }{ 3 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 8 } \right) +C }$$
  • C. $$\dfrac { 1 }{ 2 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 9 } \right) +C }$$
  • D. $$\dfrac { 1 }{ 9 } \sin ^{ -1 }{ \left( \dfrac { 9x-8 }{ 8 } \right) +C }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer