Mathematics

If $$(-1, 2)$$ and $$(2, 4)$$ are two points on the curve $$y=f(x)$$ and if $$g(x)$$ is the gradient of the curve at point (x, y), then the value of the integral $$\displaystyle\int^{2}_{-1}g(x)dx$$, is?


ANSWER

$$2$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle\int { \sin ^{ -1 }{ \sqrt { \dfrac { x }{ a+x }  }  } dx } $$ is equal to
  • A. $$\left[ \tan ^{ -1 }{ \sqrt { \dfrac { x }{ a } } } +\sqrt { \dfrac { x }{ a } } \right] +C$$
  • B. $$a\left[ \tan ^{ -1 }{ \sqrt { \dfrac { x }{ a } } } -\sqrt { \dfrac { x }{ a } } \right] +C$$
  • C. $$a\left[ \tan ^{ -1 }{ \sqrt { \dfrac { x }{ a } } } \cdot \dfrac { \left( a+x \right) }{ a } \right] +C$$
  • D. $$a\left[ \tan ^{ -1 }{ \sqrt { \dfrac { x }{ a } } } \cdot \dfrac { \left( a+x \right) }{ a } -\sqrt { \dfrac { x }{ a } } \right] +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Solve $$ \int { (\log_ e x)^2} dx $$ o
  • A. $$x \log_e x (\log_e x +2)+c$$
  • B. $$x \log_e(2\log_e \ x + 1)+c$$
  • C. $$x\{(\log_e x )^2 - 2(log_ex-2)\}+c$$
  • D. $$x[(\log x)^2 - 2(\log x)+2] + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
The value of $$\displaystyle  \int \dfrac {e^x}{x} ( x \log x+1) \  dx $$  is equal to 
  • A. $$ \dfrac {e^x} {x} + C $$
  • B. $$ x e^x \log |x| + C $$
  • C. $$ x ( e^x + \log |x| ) + C $$
  • D. $$ xe^x + \log |x| + C $$
  • E. $$ e^x \log |x| + C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
The value of the integral $$\displaystyle \int_{\pi}^{2\pi}\dfrac {(x^{2} + 2)\cos x}{x^{3}}dx$$ is
  • A. $$-\left (\dfrac {1}{4\pi^{2}}\right )$$
  • B. $$\dfrac {1}{4\pi^{2}}$$
  • C. $$\dfrac {5}{4\pi^{2}}$$
  • D. $$-\left (\dfrac {5}{4\pi^{2}}\right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
$$\int \frac{2x^{2}}{3x^{4}2x} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer