Mathematics

# $I=\displaystyle\int x^2\left(1-\dfrac{2}{x}\right)^2dx$. Evaluate the following functions w.r.t. x.

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle \int _0^2 \dfrac x 3 \, dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find the following integrals:
i) $\displaystyle \int { \dfrac { { x }^{ 3 }-1 }{ { x }^{ 2 } } dx }$

ii) $\displaystyle \int { \left( { x }^{ \cfrac { 2 }{ 3 } }+1 \right) dx }$

iii) $\displaystyle \int { \left( { x }^{ \cfrac { 3 }{ 2 } }+2{ e }^{ x }-\dfrac { 1 }{ x } \right) dx }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle\int e^{\sin x}\cdot\left(\begin{matrix} \dfrac{sin x+1}{sec x}\end{matrix}\right)dx$ is equal to?
• A. $\cos x\cdot e^{\sin x}+c$
• B. $e^{\sin x}+c$
• C. $e^{\sin x}(\sin x+1)+c$
• D. $\sin x\cdot e^{\sin x}+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\displaystyle\int {\dfrac{1}{{\sin x{{\cos }^2}x}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Find $\int \frac{2x}{\left ( x^{2} +1\right )\left ( x^{4}+4 \right )}dx.$