Mathematics

# $I = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{\sin x}}{x}dx}$, then

$\frac{{\sqrt 3 }}{8} \le I \le \frac{{\sqrt 2 }}{6}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate : $\frac{1}{{\cos \left( {x - a} \right)\cos (x - b)}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Prove that $\displaystyle\int^8_0|x-5|dx=17$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\int \sqrt{\dfrac{cos x-cos^{3} x}{1-cos^{3} x}}$.dx is equal to

• A. $\dfrac{2}{3}sin^{-1}(cos^{3/2}x)+C$
• B. $\dfrac{3}{2}sin^{-1}(cos^{3/2}x)+C$
• C. none of these
• D. $\dfrac{2}{3}cos^{-1}(cos^{3/2}x)+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve:
$\displaystyle \int_{4}^{5}{e^x dx}$

$\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { x+\sin { x } }{ 1+\cos { x } } dx }$