Mathematics

# I=$=\int_{-2}^{2}(ax^{3}+bx^{2}+cx+d)dx$  then value of I depends on-

a & c

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\int \dfrac{{{x^5}}}{{\sqrt {1 - {x^{12}}} }}\;dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int\frac{2x+3}{\sqrt{4x+3}}dx=$
• A. $\displaystyle \dfrac{1}{12}(4x-3)^{\dfrac{3}{2}}+\dfrac{1}{4}\sqrt{4x+3}+c$
• B. $\displaystyle \dfrac{1}{12}(4x+3)^{\dfrac{3}{2}}-\dfrac{3}{4}\sqrt{4x-3}+c$
• C. $\displaystyle \dfrac{1}{12}(4x+3)^{\dfrac{3}{2}}-\dfrac{1}{4}\sqrt{4x-3}+c$
• D. $\displaystyle \dfrac{1}{12}(4x+3)^{\dfrac{3}{2}}+\dfrac{3}{4}\sqrt{4x+3}+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard

Integrate
by using a suitable substitution:-

(a) $\int {{{\rm{3}} \over {{{\left( {{\rm{2 - x}}} \right)}^{\rm{2}}}}}{\rm{dx}}}$

(b) ${\rm{\;\;}}\int {{\rm{sin}}\left( {{\rm{8z - 5}}} \right){\rm{dz}}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int \frac {dx}{x^2+2x+2}$ equals
• A. $x \tan^{-1} (x + 1) + C$
• B. $(x + 1) \tan^{-1}x + C$
• C. $\tan^{-1}x + C$
• D. $\tan^{-1} (x + 1) + C$

solve $\int \frac{1}{1+e^{-1}}\;dx$