Mathematics

For $$n\in N$$, $$0 < t < \pi/2$$; the value of $$\displaystyle\int^{n\pi +t}_0(|\cos x|+|\sin x|)dx=$$?


ANSWER

$$2n-\sin t-\cos t-1$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
$$\displaystyle\int \dfrac{7x-4}{(x-1)^2(x+2)}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Multiple Correct Hard
$$\displaystyle \int \frac{\left \{ f\left ( x \right ).{\phi}' \left ( x \right )-{f}' \left ( x \right ).\phi \left ( x \right ) \right \}}{f\left ( x \right ).\phi \left ( x \right )}\left \{ \log \phi \left ( x \right )-\log f\left ( x \right ) \right \}dx$$ is equal to
  • A. $$\displaystyle \log \frac{\phi \left ( x \right )}{f\left ( x \right )}k$$
  • B. $$none\ of\ these$$
  • C. $$\displaystyle \frac{1}{2}\left \{ \log \frac{\phi \left ( x \right )}{f\left ( x \right )} \right \}^{2}+k$$
  • D. $$\displaystyle \frac{\phi \left ( x \right )}{f\left ( x \right )}log\frac{\phi \left ( x \right )}{f\left ( x \right )}+k$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$\displaystyle\int \dfrac{(7)^{x^{\dfrac{1}{2}}}}{x^3}dx=k(7)^{x^{\dfrac{1}{2}}}+c$$ then k$$=$$ ___________.
  • A. $$\dfrac{-1}{7log_e 7}$$
  • B. $$\dfrac{1}{7}$$
  • C. $$\dfrac{1}{log_e7}$$
  • D. $$\dfrac{-1}{2log_e 7}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate: $$\displaystyle\int\frac{xe^x}{(x+1)^2}dx.$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
For the next two (02) items that follow :
Consider the integrals $$I_1=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\sqrt{tan x}}$$ and $$I_2=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{sin x}dx}{\sqrt{sin }x+\sqrt{cos}x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer