Mathematics

Find the value of the equation  $$\int _ { 0 } ^ { \infty } \dfrac { d x } { \left( x + \sqrt { x ^ { 2 } + 1 } \right) ^ { 3 } } =?$$


ANSWER

$$3 / 8$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium

Find $$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2}xdx}{(\sec x+\tan x)^{n}}$$, where $$(\mathrm{n}>2)$$
  • A. $$\displaystyle \frac{1}{n^{2}-1}$$
  • B. $$\displaystyle \frac{n}{n^{2}+1}$$
  • C. $$\displaystyle \frac{2}{n^{2}-1}$$
  • D. $$\displaystyle \frac{n}{n^{2}-1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Integrate:  $$\dfrac{dy}{dx}=\left( { x }^{ 3 }+x+1 \right)$$ w.r.t $$x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int e^{x}(\dfrac{1+\sqrt{1-x^{2}}\sin^{-1}x}{\sqrt{1-x^{2}}}) dx =$$
  • A. $$\displaystyle \dfrac{e^{x}}{\sqrt{1-x^{2}}}+c$$
  • B. $$ e^{x}(e^{sin^{-1}x}+\displaystyle \dfrac{1}{\sqrt{1-x^{2}}})+c$$
  • C. $${e^{sin^{-1}x}}+\displaystyle \dfrac{1}{\sqrt{1-x^{2}}}+c$$
  • D. $$ e^{x}\sin^{-1}x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle\int \cos \left[2\cot^{-1}\sqrt{\dfrac{1-x}{1+x}}\right]dx$$ is equal to?
  • A. $$\dfrac{1}{2}\sin \left[2\cot^{-1}\sqrt{\dfrac{1-x}{1+x}}\right]+c$$
  • B. $$-\dfrac{1}{2}x^2+c$$
  • C. $$\dfrac{1}{2}x+c$$
  • D. $$\dfrac{1}{2}x^2+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let us consider the integral of the following forms
$$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$$
Case I If $$m>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$$
Case II If $$p>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$$
Case III If quadratic equation $$mx^2+nx+p=0$$ has real roots $$\alpha$$ and $$\beta$$, then put $$\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer