Mathematics

# Find the value of the equation :  $\int _ { 0 } ^ { \pi / 2 } \dfrac { 1 } { 1 + \sqrt [ 4 ] { \tan x } } d x =$

$\pi / 4$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate $\displaystyle \int e^x \left [ \dfrac{\sqrt{1 - x^2} \sin^{-1} x + 1}{\sqrt{1 - x}^2} \right ]dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
The value of $\overset{\pi}{\underset{0}{\int}}\sin^4x \,dx$ is:
• A. $0$
• B. $\dfrac{3\pi}{16}$
• C. $\dfrac{3}{16}$
• D. $\dfrac{3\pi}{8}$

1 Verified Answer | Published on 17th 09, 2020

Q3 One Word Medium
$\int \dfrac{1}{x\sqrt{1+\ln x}} dx=m\sqrt{(1+\ln x)}+c$.Find $m$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Solve :

$\displaystyle \int \frac{\sqrt{x\, -\, 1}}{x\sqrt{x\, +\, 1}} dx$
• A. $ln \left | x\, -\, \sqrt{x^2\, -\, 1}\right |\, -\, tan^{-1}x\, +\, c$
• B. $ln \left | x\, +\, \sqrt{x^2\, -\, 1}\right |\, -\, tan^{-1}x\, +\, c$
• C. $\ logx\,\,+ ln \left | x\, -\, \sqrt{x^2\, -\, 1}\right |\, -\, sec^{-1}x\, +\, c$
• D. $\log { x } -\log { \left( 1+\sqrt { 1-{ x }^{ 2 } } \right) } -\sin ^{ -1 }{ x } +c$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The value of $\displaystyle\int\limits_{1}^{e^2}\dfrac{dx}{x}$
• A. $1$
• B. $-1$
• C. $-2$
• D. $2$