Mathematics

Find the value of the equation :  $$\int _ { 0 } ^ { \pi / 2 } \dfrac { 1 } { 1 + \sqrt [ 4 ] { \tan x } } d x =$$


ANSWER

$$\pi / 4$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Evaluate $$\displaystyle \int e^x \left [ \dfrac{\sqrt{1 - x^2} \sin^{-1} x + 1}{\sqrt{1 - x}^2} \right ]dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The value of $$\overset{\pi}{\underset{0}{\int}}\sin^4x \,dx$$ is:
  • A. $$0$$
  • B. $$\dfrac{3\pi}{16}$$
  • C. $$\dfrac{3}{16}$$
  • D. $$\dfrac{3\pi}{8}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 One Word Medium
$$\int \dfrac{1}{x\sqrt{1+\ln x}} dx=m\sqrt{(1+\ln x)}+c$$.Find $$m$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Solve :

$$\displaystyle \int \frac{\sqrt{x\, -\, 1}}{x\sqrt{x\, +\, 1}} dx$$
  • A. $$ln \left | x\, -\, \sqrt{x^2\, -\, 1}\right |\, -\, tan^{-1}x\, +\, c$$
  • B. $$ln \left | x\, +\, \sqrt{x^2\, -\, 1}\right |\, -\, tan^{-1}x\, +\, c$$
  • C. $$\ logx\,\,+ ln \left | x\, -\, \sqrt{x^2\, -\, 1}\right |\, -\, sec^{-1}x\, +\, c$$
  • D. $$\log { x } -\log { \left( 1+\sqrt { 1-{ x }^{ 2 } }  \right)  } -\sin ^{ -1 }{ x } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
The value of $$\displaystyle\int\limits_{1}^{e^2}\dfrac{dx}{x}$$
  • A. $$1$$
  • B. $$-1$$
  • C. $$-2$$
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer