Mathematics

# Find the value of $\displaystyle \int _{0}^{1}(x^2+2)\ dx$.

##### SOLUTION
$\displaystyle \int_{0}^{1}{\left( {x}^{2} + 2 \right) dx}$

$\displaystyle = \left[ \cfrac{{x}^{3}}{3} + 2x \right]_{0}^{1}$
$= \left[ \left( \cfrac{1}{3} + 2 \right) - 0 \right]$

$= \cfrac{7}{3}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
The value of $\displaystyle\int\limits_{-1}^1x|x|\ dx=$
• A. $\dfrac{1}{2}$
• B. $1$
• C. none of these
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\text { Evaluate: } \int_{0}^{\pi} \dfrac{\mathrm{x} \mathrm{dx}}{\mathrm{a}^{2} \cos ^{2} \mathrm{x}+\mathrm{b}^{2} \sin ^{2} \mathrm{x}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $I_1=\int_{0}^{\pi/2}x \cdot sin x \, dx\, and$
$I_2=\int_{0}^{\pi/2}x\cdot cos x dx$, then which one of the following is true?
• A. $I_0=I_2$
• B. $I_0+I_2$
• C. $I_1=\frac{\pi}{2}\cdot I_2$
• D. $I_1+I_2=\frac{\pi}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium

Solve:

$\int_{0}^{\frac{\pi }{2}}{\dfrac{\sin xdx}{9+{{\cos }^{2}}x}}$

Let $\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$