Mathematics

# Find the integral 1) $\int {\dfrac{{dx}}{{\sqrt {9 - 25{x^2}} }}}$

##### SOLUTION
Sol :- $\displaystyle \int \dfrac{dx}{\sqrt{9-25x^{2}}} = \frac{1}{5}\int \frac{1}{\sqrt{\left ( \dfrac{3}{5} \right )-x^{2}}}$
Using $\displaystyle \int \frac{1}{\sqrt{a^{2}-x^{2}}} = sin^{-1}\frac{x}{a}+c$
$\displaystyle = I = \frac{1}{5}\int \frac{1}{\sqrt{\left ( \dfrac{3}{5} \right )^{2}-x^{2}}} = \frac{1}{5}sin ^{-1}\frac{5x}{3}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
if $\displaystyle \int \frac{x^{4} + 1}{x(x^{2} + 1)^{2}} dx = A\, ln |x| + \frac{B}{1 + x^{2}} + c$, where c is the constant of integration then :
• A. $A = 1, B = -1$
• B. $A = -1, B = 1$
• C. $A = -1, B = -1$
• D. $A = 1, B = 1$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Object: $\displaystyle\int cosec^{-1}x, dx, x > 1$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Derive partial fraction  for$\displaystyle \frac{5x^{2}+1}{x^{3}-1}=$
• A. $\displaystyle \frac{3}{x-1}+\frac{2x+1}{x^{2}+x+1}$
• B. $\displaystyle \frac{4}{x-1}+\frac{5x+1}{x^{2}+x+1}$
• C. $\displaystyle \frac{1}{x-1}+\frac{4x+1}{x^{2}+x+1}$
• D. $\displaystyle \frac{2}{x-1}+\frac{3x+1}{x^{2}+x+1}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int t^{3/2}+t^{1/2}dt$

Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$