Mathematics

# Find the following integrals$(4e^{3x}+1)dx$

##### SOLUTION
$\displaystyle\int (4e^{3x}+1)dx=\dfrac{4e^{3x}}{3}+x=\dfrac{4}{3}e^{3x}+x+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Subjective Medium
Evaluate the definite integral   $\displaystyle \int_{\frac {\pi}{6}}^{\frac {\pi}{3}}\frac {\sin x+\cos x}{\sqrt {\sin 2x}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\displaystyle \int ^{\tan x}_{1/e}\displaystyle \frac{t\, dt}{1+t^{2}}+\displaystyle \int ^{\cot x}_{1/e}\displaystyle \frac{dt}{t\left ( 1+t^{2} \right )}$ is
• A. $\displaystyle \frac{1}{2+tan^{2}x}$
• B. $\pi /4$
• C. $\displaystyle \frac{2}{\pi }\displaystyle \int ^{1}_{-1}\displaystyle \frac{dt}{1+t^{2}}$
• D. $1$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate: $\displaystyle\int {{sin^{ - 1}}} \left( {{{2x} \over {1 + {x^2}}}} \right)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int \cfrac{x-1}{\sqrt{x^{2}-1}} \ dx$

Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.