Mathematics

# Find the following integral.$\displaystyle\int e^x (\sec^2 x + \tan x).dx$

##### SOLUTION
Now,
$\displaystyle\int e^x (\sec^2 x + \tan x).dx$
$=\displaystyle\int e^x (\sec^2 x ).dx+$$\displaystyle\int e^x ( \tan x).dx =e^x\displaystyle\int\sec^2 x.dx-\displaystyle\int e^x ( \tan x).dx$$+\displaystyle\int e^x ( \tan x).dx$  [Using method of by parts]
$=e^x.\tan x-\displaystyle\int e^x ( \tan x).dx$$+\displaystyle\int e^x ( \tan x).dx$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate:-
$\int_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\log \left( {\dfrac{{2 - \operatorname{sinx} }}{{2 + \sin x}}} \right)dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
If $\displaystyle I_{1} = \int_{0}^{\frac{\pi}2} f(\sin 2x) \sin x\>dx$
and $\displaystyle I_{2} = \int_{0}^{\frac{\pi}4} f(\cos 2x) \cos x\>dx,$ then $\displaystyle \frac{I_{1}}{I_{2}}$ is equal to
• A. $1$
• B. $\dfrac{1}{\sqrt{2}}$
• C. $2$
• D. $\sqrt{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle\int_{0}^{2} (1+2x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Solve $I = \displaystyle\int\dfrac{1}{\cos^2x(1-\tan x)^2}dx$.
• A. $I=\cfrac{-1}{1 -\cot x}+C$
• B. $I=\cfrac{1}{1 -\tan x}+C$
• C. None of these
• D. $I=\cfrac{-1}{1 -\tan x}+C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\int \dfrac{x}{\sqrt{x^2+2}}dx$
• A. $\dfrac{x^2+2}{2}+C$
• B. $x^2+2+C$
• C. $\dfrac{1}{2}\sqrt{x^2+2}+C$
• D. $\sqrt{x^2+2}+C$