Mathematics

# Find the derivative of $\dfrac{e^{x}}{\sin x}$.

$e^x\text{cosec }x[1-\cot x]$

##### SOLUTION
On Differentiation we get
$\dfrac d{dx} e^xcosec x=-e^x.cosec x\cot x+e^x.cosec x=e^x.cosec x[1-\cot x]$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Single Correct Hard
The value of $\displaystyle \int_{ {\pi^{3}}/{27}}^{ {\pi^{3}}/{8}}sinx.dt$ , where $t= x^3$, is?
• A. $cos\displaystyle \frac{\pi^{3}}{27}-cos\displaystyle \frac{\pi^{3}}{8}$
• B. $\displaystyle \frac{\pi^2}{6}$
• C. None of these
• D. $\displaystyle \frac{\pi^{2}}{6}+(3-\sqrt3)\pi-3$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the function    $\displaystyle \frac {2+\sin 2x}{1+\cos 2x}e^x$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int { \sqrt { \left( \dfrac { 1-\sqrt { x } }{ 1+\sqrt { x } } \right) } dx= }$
• A.
• B.
• C.
• D.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle I=\int e^{x}\left [ \frac{1+\sqrt{1-x^{2}}\sin ^{-1}x}{\sqrt{\left ( 1-x^{2} \right )}} \right ]dx$
• A. $-e^{-x}\sin ^{-1}x+c$
• B. $-e^{x}\cos ^{-1}x+c$
• C. $e^{-x}\cos ^{-1}x+c$
• D. $e^{x}\sin ^{-1}x+c$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$