Mathematics

Find the derivative of $$\dfrac{e^{x}}{\sin x}$$.


ANSWER

$$e^x\text{cosec }x[1-\cot x]$$


SOLUTION
On Differentiation we get 
$$\dfrac d{dx} e^xcosec x=-e^x.cosec x\cot x+e^x.cosec x=e^x.cosec x[1-\cot x]$$
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
The value of $$\displaystyle \int_{ {\pi^{3}}/{27}}^{ {\pi^{3}}/{8}}sinx.dt$$ , where $$t= x^3$$, is?
  • A. $$cos\displaystyle \frac{\pi^{3}}{27}-cos\displaystyle \frac{\pi^{3}}{8}$$
  • B. $$\displaystyle \frac{\pi^2}{6}$$
  • C. None of these
  • D. $$\displaystyle \frac{\pi^{2}}{6}+(3-\sqrt3)\pi-3$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Integrate the function    $$\displaystyle \frac {2+\sin 2x}{1+\cos 2x}e^x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\int { \sqrt { \left( \dfrac { 1-\sqrt { x }  }{ 1+\sqrt { x }  }  \right)  } dx= } $$
  • A.
  • B.
  • C.
  • D.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle I=\int e^{x}\left [ \frac{1+\sqrt{1-x^{2}}\sin ^{-1}x}{\sqrt{\left ( 1-x^{2} \right )}} \right ]dx$$
  • A. $$-e^{-x}\sin ^{-1}x+c$$
  • B. $$-e^{x}\cos ^{-1}x+c$$
  • C. $$e^{-x}\cos ^{-1}x+c$$
  • D. $$e^{x}\sin ^{-1}x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer