Mathematics

Find the anti-derivative of $$(ax+b)^2$$ with respect to $$x$$.


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate $$\displaystyle \int_{0}^{2\pi }e^{x}\cos \left ( \frac{\pi }{4}+\frac{x}{2} \right )dx$$
  • A. $$\displaystyle -\frac{3\sqrt{2}}{5}\left ( e^{2\pi }-1 \right )$$
  • B. $$\displaystyle \frac{3\sqrt{2}}{5}\left ( e^{2\pi }-1 \right )$$
  • C. $$\displaystyle \frac{3\sqrt{2}}{5}\left ( e^{2\pi }+1 \right )$$
  • D. $$\displaystyle -\frac{3\sqrt{2}}{5}\left ( e^{2\pi }+1 \right )$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate $$\int \sin x \sin(\cos x) \ dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate $$\displaystyle \int {\frac{1}{{{x^4} + 1}}dx} $$ 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
For any natural number m, $$\int { \left( { x }^{ 7m }+{ x }^{ 2m }+{ x }^{ m } \right) { \left( { 2{ x }^{ 6m }+7{ x }^{ m }+14 } \right)  }^{ \frac { 1 }{ m }  }dx } $$ (where x>0), equals
  • A. $$\displaystyle \frac { { (7{ x }^{ 7m }+2{ x }^{ 2m }+14{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$$
  • B. $$\displaystyle \frac { { (2{ x }^{ 7m }+14{ x }^{ 2m }+7{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$$
  • C. $$\displaystyle \frac { { (7{ x }^{ 7m }+2{ x }^{ 2m }+{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$$
  • D. $$\displaystyle \frac { { (2{ x }^{ 7m }+7{ x }^{ 2m }+14{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate:
$$\displaystyle\int e^x(x^2+2x)\ dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer