Mathematics

# Find the anti-derivative of $(ax+b)^2$ with respect to $x$.

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
Evaluate $\displaystyle \int_{0}^{2\pi }e^{x}\cos \left ( \frac{\pi }{4}+\frac{x}{2} \right )dx$
• A. $\displaystyle -\frac{3\sqrt{2}}{5}\left ( e^{2\pi }-1 \right )$
• B. $\displaystyle \frac{3\sqrt{2}}{5}\left ( e^{2\pi }-1 \right )$
• C. $\displaystyle \frac{3\sqrt{2}}{5}\left ( e^{2\pi }+1 \right )$
• D. $\displaystyle -\frac{3\sqrt{2}}{5}\left ( e^{2\pi }+1 \right )$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\int \sin x \sin(\cos x) \ dx$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle \int {\frac{1}{{{x^4} + 1}}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
For any natural number m, $\int { \left( { x }^{ 7m }+{ x }^{ 2m }+{ x }^{ m } \right) { \left( { 2{ x }^{ 6m }+7{ x }^{ m }+14 } \right) }^{ \frac { 1 }{ m } }dx }$ (where x>0), equals
• A. $\displaystyle \frac { { (7{ x }^{ 7m }+2{ x }^{ 2m }+14{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$
• B. $\displaystyle \frac { { (2{ x }^{ 7m }+14{ x }^{ 2m }+7{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$
• C. $\displaystyle \frac { { (7{ x }^{ 7m }+2{ x }^{ 2m }+{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$
• D. $\displaystyle \frac { { (2{ x }^{ 7m }+7{ x }^{ 2m }+14{ x }^{ m }) }^{ \frac { m+1 }{ m } } }{ 14(m+1) } +C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate:
$\displaystyle\int e^x(x^2+2x)\ dx$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020