Mathematics

# Find $\int {{e^x}\left( {\frac{{x - 1}}{{{x^2}}}} \right)} dx$

##### SOLUTION
$\displaystyle\int e^x\left(\dfrac{x-1}{x^2}\right)dx$
$=\displaystyle\int e^x\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)dx$
$=\displaystyle\int \dfrac{d}{dx}\left\{\dfrac{e^x}{x}\right\}dx$
$=\dfrac{e^x}{x}+c$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle I= \int_{\pi /6}^{\pi /3}\frac{1}{1+\sqrt{\left ( \cot x \right )}}dx$
• A. $\displaystyle -\frac{\pi }{6}.$
• B. $\displaystyle \frac{\pi }{6}.$
• C. $\displaystyle -\frac{\pi }{12}.$
• D. $\displaystyle \frac{\pi }{12}.$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve $\int {\cos 4x\cos xdx}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int^b_a \dfrac{|x|}{x}dx =`$
• A. $a - b$
• B. $a + b$
• C. $|b| - |a|$
• D. $b - a$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\int { \cfrac { x }{ \left( { x }^{ 4 }-16 \right) } } dx=$?
• A. $\cfrac { 1 }{ 4 } \log { \left| \cfrac { { x }^{ 2 }+4 }{ { x }^{ 2 }-4 } \right| } +C$
• B. $\cfrac { 1 }{ 16 } \log { \left| \cfrac { { x }^{ 2 }+4 }{ { x }^{ 2 }-4 } \right| } +C$
• C. none of these
• D. $\cfrac { 1 }{ 16 } \log { \left| \cfrac { { x }^{ 2 }-4 }{ { x }^{ 2 }+4 } \right| } +C$

$\int {\dfrac{{2x + 7}}{{{{(x - 4)}^2}}}dx}$