Mathematics

Find $$\int {{e^x}\left( {\frac{{x - 1}}{{{x^2}}}} \right)} dx$$


SOLUTION
$$\displaystyle\int e^x\left(\dfrac{x-1}{x^2}\right)dx$$
$$=\displaystyle\int e^x\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)dx$$
$$=\displaystyle\int \dfrac{d}{dx}\left\{\dfrac{e^x}{x}\right\}dx$$
$$=\dfrac{e^x}{x}+c$$.
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle I= \int_{\pi /6}^{\pi /3}\frac{1}{1+\sqrt{\left ( \cot x \right )}}dx$$
  • A. $$\displaystyle -\frac{\pi }{6}.$$
  • B. $$\displaystyle \frac{\pi }{6}.$$
  • C. $$\displaystyle -\frac{\pi }{12}.$$
  • D. $$\displaystyle \frac{\pi }{12}.$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve $$\int {\cos 4x\cos xdx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int^b_a \dfrac{|x|}{x}dx =`$$
  • A. $$a - b$$
  • B. $$a + b$$
  • C. $$|b| - |a|$$
  • D. $$b - a$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\int { \cfrac { x }{ \left( { x }^{ 4 }-16 \right)  }  } dx=$$?
  • A. $$\cfrac { 1 }{ 4 } \log { \left| \cfrac { { x }^{ 2 }+4 }{ { x }^{ 2 }-4 } \right| } +C$$
  • B. $$\cfrac { 1 }{ 16 } \log { \left| \cfrac { { x }^{ 2 }+4 }{ { x }^{ 2 }-4 } \right| } +C$$
  • C. none of these
  • D. $$\cfrac { 1 }{ 16 } \log { \left| \cfrac { { x }^{ 2 }-4 }{ { x }^{ 2 }+4 } \right| } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\int {\dfrac{{2x + 7}}{{{{(x - 4)}^2}}}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer