Mathematics

# Find : $\int { \dfrac { { 3x }^{ 2 }-2x+5 }{ x\sqrt { x } } } dx$

##### SOLUTION
$\displaystyle\int { \dfrac { { 3 x }^{ 2 }-2 x+5 }{ x\sqrt { x } } } d x$

$=\int \dfrac{3 x^2-2 x+5}{x^{3/2}}d x=3\int x^{2-3/2}d x-2\int x^{1-3/2}d x+5\int x^{-3/2} d x$

$=3\displaystyle\int x^{1/2}d x-2\int x^{-1/2}d x+5\int x^{-3/2} d x$

$=3\dfrac{x^{1/2+1}}{1/2+1}-2\dfrac{x^{-1/2+1}}{-1/2+1}+5\dfrac{x^{-3/2+1}}{-3/2+1}+C$

$=2 x\sqrt{x}-4\sqrt{x}-10\sqrt{x}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
$\int\dfrac{{(x + 1){{(x + \log x)}^2}}}{x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle\int {\dfrac{{{{\tan }^4}\sqrt x \,{{\sec }^2}\sqrt x }}{{\sqrt x }}} \,dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate:
$\displaystyle \int^{\frac{\pi}{4}}_{0}e^{\sin x}(1 + \tan x \sec x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Evaluate : $\displaystyle \underset{0}{\overset{\infty}{\int}} \dfrac{dx}{(1 + x^2)^4}$
• A. $\dfrac{\pi}{32}$
• B. $\dfrac{3 \pi}{32}$
• C. $\dfrac{7 \pi}{32}$
• D. $\dfrac{5 \pi}{32}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Hard
Let us consider the integral of the following forms
$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$
Case I If $m>0$, then put $\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$
Case II If $p>0$, then put $\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$
Case III If quadratic equation $mx^2+nx+p=0$ has real roots $\alpha$ and $\beta$, then put $\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$