Mathematics

Find $\displaystyle \int_{}^{} {x{e^x}dx.}$

SOLUTION
$\begin{array}{l}\int_{}^{} {x{e^x}dx} = x{e^x} - \int_{}^{} {{e^x}} dx\\ = x{e^x} - {e^x} + c\end{array}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Subjective Medium
Evaluate $\int {\dfrac{{{e^{x - 1}} + {x^{e - 1}}}}{{{e^x} + {x^e}}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $0 < \alpha < 1$ and $\displaystyle I=\int _{-1}^{1} \frac{dx}{\sqrt{1-2\alpha x+\alpha^{2}}}$ then $I$ equals
• A. $1/\alpha$
• B. $2/\alpha$
• C. $3/\alpha$
• D. none of these

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle\int \frac{3x+4}{x^{2}+4x+2}dx.$
• A. $\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )+\frac{1}{\sqrt{\left ( 2 \right )}}\log \frac{x+2-\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$
• B. $\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )-\frac{1}{2\sqrt{\left ( 2 \right )}}\log \frac{x+2-\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$
• C. $\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )-\frac{1}{\sqrt{2\left ( 2 \right )}}\log \frac{x+2-2\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$
• D. $\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )-\frac{1}{\sqrt{\left ( 2 \right )}}\log \frac{x+2-\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle\int^{\pi/2}_{-\pi/2}\cos xdx=?$
• A. $0$
• B. $-1$
• C. None of these
• D. $2$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Hard
$\displaystyle\int _{ -9 }^{ 9 }{ \log { \left( x+\sqrt { { x }^{ 2 }+1 } \right) } dx }$ equal
• A. $2\log (9^{2}+1)$
• B. $2\log (\sqrt{9^{2}+1}-9)$
• C. $2\log (9+\sqrt{9^{2}+1})$
• D. $0$