Mathematics

Find $$\displaystyle  \int_{}^{} {x{e^x}dx.} $$


SOLUTION
$$\begin{array}{l}\int_{}^{} {x{e^x}dx}  = x{e^x} - \int_{}^{} {{e^x}} dx\\ = x{e^x} - {e^x} + c\end{array}$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate $$\int {\dfrac{{{e^{x - 1}} + {x^{e - 1}}}}{{{e^x} + {x^e}}}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
If $$0 < \alpha < 1$$ and $$\displaystyle I=\int _{-1}^{1} \frac{dx}{\sqrt{1-2\alpha x+\alpha^{2}}} $$ then $$I$$ equals
  • A. $$1/\alpha $$
  • B. $$ 2/\alpha $$
  • C. $$ 3/\alpha$$
  • D. none of these

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle\int \frac{3x+4}{x^{2}+4x+2}dx.$$
  • A. $$\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )+\frac{1}{\sqrt{\left ( 2 \right )}}\log \frac{x+2-\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$$
  • B. $$\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )-\frac{1}{2\sqrt{\left ( 2 \right )}}\log \frac{x+2-\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$$
  • C. $$\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )-\frac{1}{\sqrt{2\left ( 2 \right )}}\log \frac{x+2-2\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$$
  • D. $$\displaystyle \frac{3}{2}\log \left ( x^{2}+4x+2 \right )-\frac{1}{\sqrt{\left ( 2 \right )}}\log \frac{x+2-\sqrt{2}}{x+2+\sqrt{\left ( 2 \right )}}.$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle\int^{\pi/2}_{-\pi/2}\cos xdx=?$$
  • A. $$0$$
  • B. $$-1$$
  • C. None of these
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Hard
$$\displaystyle\int _{ -9 }^{ 9 }{ \log { \left( x+\sqrt { { x }^{ 2 }+1 }  \right)  } dx } $$ equal 
  • A. $$2\log (9^{2}+1)$$
  • B. $$2\log (\sqrt{9^{2}+1}-9)$$
  • C. $$2\log (9+\sqrt{9^{2}+1})$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer