Mathematics

# EVALUATE $\int_{2}^{3} \frac{1}{x+5} d x$

##### SOLUTION
$\displaystyle\int ^{3}_{2}\dfrac{1}{x+5}d x=[\ln |x+5|]^3_2=\ln |3+5|-\ln |2+5|=\ln 8-\ln 7=\ln \dfrac{8}{7}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate : $\int {\frac{1}{{\left( {\sqrt x + x} \right)}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the definite integral   $\displaystyle \int_0^1\frac {dx}{1+x^2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Solve $\int e^{ax} \cos\ bx\ dx=\dfrac{e^{ax}}{a^{2}+b^{2}}(a \cos bx+b\sin bx)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $f(x)=\displaystyle \int_{0}^{n/2}\dfrac{log(1+xsin^{2}\theta)}{sin^{2}\theta}d\theta,x\geq 0$is equal to
• A. $\dfrac{1}{\pi}(\sqrt{1+x}-1)$
• B. $\sqrt{\pi}(\sqrt{1+x}-1)$
• C. None of these
• D. ${\pi}(\sqrt{1+x}-1)$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$