Mathematics

Evaluate
$$\int\limits_0^\infty  {\frac{{\log \left( {1 + {x^2}} \right)dx}}{{1 + {x^2}}}}  = $$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Solve $$\displaystyle\int { \frac { 1 }{ \sqrt { 3x+4 } -\sqrt { 3x+1 }  } dx }$$ 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\int \:\dfrac{1-x^7}{x\left(1+x^7\right)}dx$$ equals 
  • A. $$ln\left|x\right|-\dfrac{2}{4}ln\left|1-x^7\right|+c$$
  • B. $$ln\left|x\right|-\dfrac{2}{7}ln\left|1+x^7\right|+c$$
  • C. $$ln\left|x\right|+\dfrac{2}{4}ln\left|1-x^7\right|+c$$
  • D. $$ln\left|x\right|+\dfrac{2}{7}ln\left|1+x^7\right|+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate the integral
$$\displaystyle \int_{0}^{1}\tan^{-1}x \ dx$$
  • A. $$\dfrac{\pi}{4}-\dfrac{1}{4} log2$$
  • B. $$\displaystyle \frac{\pi}{4}+\frac{1}{2} log 2$$
  • C. $$\displaystyle \frac{\pi}{4}+\frac{1}{4} log 2$$
  • D. $$\displaystyle \frac{\pi}{4}-\frac{1}{2} log2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 One Word Hard
The value of the integral
$$\displaystyle \int_{0}^{\frac {1}{2}}\frac {1 + \sqrt {3}}{(x + 1)^{2} (1 - x)^{6})^{\frac {1}{4}}}dx$$ is _______.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 One Word Medium
If $$\displaystyle \int \left[\left(\dfrac{x}{e}\right)^x + \left(\dfrac{e}{x} \right)^x \right]  \ln x \, dx = A \left(\dfrac{x}{e}\right)^x + B \left(\dfrac{e}{x} \right)^x + C$$, then value of $$A + B = $$?

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer