Mathematics

# Evaluate:$\int { \sin ^{ 2 }{ x } } \cos ^{ 2 }{ x } dx$

##### SOLUTION
$u=sin2x,du=2cos2xdx$
$\frac { 1 }{ 2 } \int { udu } =\frac { 1 }{ 4 } { u }^{ 2 }+C$
$\frac { 1 }{ 4 } { sin }^{ 2 }2x+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Solve:
$\int \dfrac{1}{\sqrt{1-e^{2x}}}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
If $\int { { e }^{ x }\left( \tan { x } +1 \right) \sec { x } } dx={ e }^{ x }f(x)+C$, then write the value of $f(x)$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\dfrac{x+1}{(2x-1)(3x+1)}=\dfrac{A}{2x-1}+\dfrac{B}{3x+1} \ \ \ \Rightarrow 16A+9B=$
• A. 4
• B. 5
• C. 8
• D. 6

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate $\int { \cfrac { { x }^{ 3 }+{ 4x }^{ 2 }-7x+5 }{ x+2 } dx }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate
$\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { x+\sin { x } }{ 1+\cos { x } } dx }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020