Mathematics

Evaluate
$$\int {\frac{{{x^2}}}{{{x^2} + 1}}dx} $$


ANSWER

$$x-\tan^{-1}x+C$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Let  $$\theta$$  be the angle between the lines  $${ L }_{ { 1 } }:\left[ \begin{array}{l} { { x }=2{ t }+{ 1 } } \\ { { y }={ t }+{ 1 } } \\ { { z }=3{ t }+{ 1 } } \end{array} \right. $$  and  $${ L }_{ { 2 } }:\left[ \begin{array}{l} { { x }=3{ s }+2 } \\ { { y }=6{ s }-1 } \\ { { z }=4 } \end{array} \right. $$  where  $$s , t \in  { R }.$$  Then the value of  $$\int _ { 0 } ^ { \theta } \dfrac { 1 } { 1 + \tan x } d x =$$
  • A. $$\pi / 4$$
  • B. $$\pi / 2$$
  • C. $$\pi / 3$$
  • D. $$\pi / 6$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The integral $$\displaystyle \int^{4}_{2}\dfrac {\log x^{2}}{\log x^{2}+\log (36-12x+x^{2})}dx$$ is equal to
  • A. $$2$$
  • B. $$4$$
  • C. $$6$$
  • D. $$1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle\int { \dfrac { { x }^{ 5 } }{ \sqrt { 1+{ x }^{ 3 } }  } dx } $$ is equal to
  • A. $$\dfrac { 2 }{ 9 } \sqrt { { x }^{ 3 }-9 } \left( 1+{ x }^{ 2 } \right) +C$$
  • B. $$\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 3 } } +C$$
  • C. $$\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 3 } } \left( { x }^{ 3 }-2 \right) +C$$
  • D. $$\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 2 } } \left( { x }^{ 3 }+9 \right) +C$$
  • E. $$\dfrac { 2 }{ 9 } \sqrt { 1+{ x }^{ 2 } } \left( { x }^{ 3 }-9 \right) +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate: $$\displaystyle\int_{0}^{\dfrac{\pi}{2}}\sqrt{sin\,\phi} \, cos^5\,\phi\,d\,\phi$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$$  &  $$\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$$

On the basis of above information, answer the following questions: 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer