Mathematics

Evaluate
$$\int {\dfrac{{dt}}{{5t + 1}}} $$


SOLUTION
$$\displaystyle\int\dfrac{dt}{5t+1}$$
we know that $$\displaystyle\int \dfrac{dx}{x}=\log 1\times 1+c$$
put $$u=5t+1$$
$$du=5dt$$
$$=\dfrac{1}{5}\displaystyle\int \dfrac{du}{u}$$
$$\dfrac{1}{5}\log |u|+C$$
$$\dfrac{1}{5}\log|5t+1|+C$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int_{}^{} {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}} dx} $$, where $$0 < x < \dfrac{\pi }{2}$$ is equal to 
  • A. $$2{x^2} + C$$
  • B. $${x^2} + C$$
  • C. $$\dfrac{x^3}{3}  +C $$
  • D. $$\dfrac{x^2}{2} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
lf $$\displaystyle \int\frac{dx}{(\sin x+4)(\sin x-1)}=\frac{A}{\tan\frac{x}{2}-1}+B\tan^{-1}f(x)+c {\it}$$ then
  • A. $$A =\displaystyle \frac{1}{5},\ B=\displaystyle \frac{2}{5\sqrt{15}},\ f(x) =\displaystyle \dfrac{4\tan x+3}{\sqrt{15}}$$
  • B. $$A =-\displaystyle \frac{1}{5},\ B=\displaystyle \frac{2}{\sqrt{15}},\ f(x) =\displaystyle \frac{4\tan\dfrac{x}{2}+1}{\sqrt{15}}$$
  • C. $$A=\displaystyle \frac{2}{5},\ B=-\displaystyle \dfrac{2}{5\sqrt{15}},f(x)=\frac{4\tan x+1}{\sqrt{15}}$$
  • D. $$\displaystyle A=\frac{2}{5},\ B=-\displaystyle \frac{2}{5\sqrt{15}},f(x)=\frac{4\tan\dfrac{x}{2}+1}{\sqrt{15}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$\int {\frac{{\sin x}}{{\sin \left( {x - \alpha } \right)}}dx = Ax + B\log \sin \left( {x - \alpha } \right) + C} ,$$ then value of $$(A,B)$$ is
  • A. $$\left( {\sin \alpha ,\cos \alpha } \right)$$
  • B. $$\left( { - \cos \alpha ,\sin \alpha } \right)$$
  • C. $$\left( { - \sin \alpha ,\cos \alpha } \right)$$
  • D. $$\left( {\cos \alpha ,\sin \alpha } \right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
If $$\displaystyle \int \dfrac{\text{cosec}^2x - 2010}{\cos^{2010x}}dx=-\dfrac{f(x)}{(g(x))^{2010}}+C$$; then the number of solutions where equation $$\dfrac{f(x)}{g(x)}=\left \{ x \right \}$$ in $$[0, 2\pi]$$ is/are:
  • A. $$1$$
  • B. $$2$$
  • C. $$3$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
$$\int { \cfrac { f'(x) }{ f(x) } dx } =\log { [f(x)] } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer