Mathematics

# Evaluate:$\int { \cfrac { ({ x }^{ 2 }+x+1) }{ (x+2)({ x }^{ 2 }+1) } dx }$

##### SOLUTION Its FREE, you're just one step away

Subjective Hard Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

#### Realted Questions

Q1 Subjective Medium
Evaluate:
$\displaystyle \int_{0}^{\pi} \dfrac{x}{1 + sinx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate:
$\int{\left( 3x+2 \right)\sqrt{10-4x-3{{x}^{2}}}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve: $\int 3^x.e^x dx =$?

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Let $\int { (2,3)\rightarrow (0,1) }$ be defined by $\int { (x)=x-[x] }$ then $\int^{ -1 }{ (x) }$ equals
• A. $x+1$
• B. $x-1$
• C. $x+2$
• D. $x-2$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$