Mathematics

Evaluate:
$$\int { \cfrac { { x }^{ 2 } }{ \left( 1+{ x }^{ 3 } \right)  }  } dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Hard Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$l_{n}=\displaystyle \int{\dfrac{t^{n}}{1+t^{2}}}dt$$ then
  • A. $$l_{n+1}=\dfrac{t^{n+1}}{n+1}l_{n}$$
  • B. $$l_{n+1}=\dfrac{t^{n-1}}{n-1}l_{n}$$
  • C. $$l_{n21}=\dfrac{t^{n+1}}{n+1}l_{n}$$
  • D. $$l_{n+2}=\dfrac{t^{n}}{n}-nl_{n}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$\displaystyle I_{1}= \int_{0}^{\pi}\frac{x\sin x}{1+\cos^{2} x} dx, I_{2}=\int _{0}^{\pi} x \sin ^{4}x \:dx $$ then $$ I_{1}:I_{2}=$$
  • A. $$3:4$$
  • B. $$1:2$$
  • C. $$2:3$$
  • D. $$4:3$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Integrate the function $$\frac{1}{\sqrt{(2-x)^2+1}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle\frac{(x+1)^{2}}{x^{3}+x}=\frac{A}{x}+\frac{Bx+C}{x^{2}+1}\Rightarrow \sin^{-1}[\frac{A}{C}]=$$
  • A. $$\displaystyle\frac{\pi }{4}$$
  • B. $$\displaystyle\frac{\pi }{3}$$
  • C. $$\displaystyle\frac{\pi }{2}$$
  • D. $$\displaystyle\frac{\pi }{6}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer