Mathematics

# Evaluate$\int _{ -1 }^{ 1 }{ { x }^{ 17 } } { cos }^{ 4 }xdx$

##### SOLUTION
$f(x)=x^{17}\cos^4 x$
$f(-x)=(-x)^{17}\cos^4 (-x)=x^{17}\cos^4 (x)=-f(x)$
$Hence$ $function$ $is$ $odd$
$By \space using \space the \space property \space of \space definite \space integral$
$\therefore \int_{-1}^{1}{x^{17}\cos^4 x.dx}=0$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
Integrate
$\displaystyle\int {\dfrac{{dx}}{{\left( {x + 1} \right)\sqrt {2{x^2} + 3x + 1} }}}$
• A. $I=\left( \sqrt{\dfrac{2x+1}{1+x}} \right)+C$
• B. $I=2\left( \sqrt{\dfrac{2x-1}{1+x}} \right)+C$
• C. None of these
• D. $I=2\left( \sqrt{\dfrac{2x+1}{1+x}} \right)+C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the function :  $\sqrt {ax+b}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find $\displaystyle\int { \dfrac { 1 }{ x\sqrt { { x }^{ 2 }-x } } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int \frac{\sin x+\cos x}{\sqrt{\left ( 1+\sin 2x \right )}}$dx is
• A. $\displaystyle \sin x + C$
• B. $\displaystyle \cos x+C$
• C. $\displaystyle \tan x+C$
• D. $x+C$

$\displaystyle\int \dfrac{1}{e^x+e^{-x}}dx$.