Mathematics

# Evaluate:$\displaystyle\int{{x}^{2}{(3-x)}^{5}dx}$

##### SOLUTION
$\displaystyle =\int x^2 (3-x)^5dx$
$I$       $II$

$\displaystyle =x^2 \int(3-x)^5dx - \int\left(\dfrac{d(x^2)}{dx} \int (3-x)^5dx\right)dx$

$\displaystyle = x^2 \dfrac{(3-x)^6}{6} (-1) - \int 2x \dfrac{(3-x)^6}{6} (-1)dy$

$\displaystyle = \dfrac{-x^2}{6} (3-x)^6 + \dfrac{1}{3} \int x(3-x)^6dy$
$I$     $II$

$\displaystyle = \dfrac{-x^2}{6} (3-x)^6 + \dfrac{1}{3} \left[ x\int (3-x)^6 dx - \int\left(\dfrac{dx}{dx}\int (3-x)^6 dx\right)dx\right]$

$\displaystyle =\int \dfrac{-x^2}{6}(3-x)^6 + \dfrac{1}{3} \left[x \dfrac{(3-x)^7}{7} (-1)-\int \dfrac{(3-x)^7}{7}(-1)dx\right]$

$\displaystyle = \dfrac{-x^2}{6} (3-x)^6 + \dfrac{1}{3} \left[-\dfrac{x}{7}(3-x)^7 + \dfrac{1}{7}\int (3-x)^7dx\right]$

$\displaystyle =-\dfrac{x^2}{6} (3-x)^6 + \dfrac{1}{3} \left[-\dfrac{x}{7} (3-x)^7 + \dfrac{1}{7} \dfrac{(3-x)^8}{8} (-1) \right]+C$

$\displaystyle =\dfrac{-x^2}{6} (3-x)^6 + \dfrac{1}{3}\left[ -\dfrac{x}{7} (3-x)^7 - \dfrac{1}{56} (3-x)^8 \right]+ C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle\int^{\pi/3}_0\cos^3xdx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle \int \dfrac{1}{(a^2-x^2)^{\tfrac 3 2}}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int{\dfrac{x^{3}-1}{x^{3}+x}dx}$ equal to
• A. $x-\log x+\log(x^{2}+1)-\tan^{-1}x+c$
• B. $x+\log x+\dfrac{1}{2}\log(x^{2}+1)+\tan^{-1}x+c$
• C. $x+\log x-\dfrac{1}{2}\log(x^{2}+1)-\tan^{-1}x+c$
• D. $x-\log x+\dfrac{1}{2}\log(x^{2}+1)-\tan^{-1}x+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int{ \sin }^{ 4 }x \cos x dx$

Evaluate :$\displaystyle \int \dfrac{dx}{x(x^2+1)}$