Mathematics

# Evaluate:$\displaystyle\int{\tan{x}\tan{2x}dx}$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
The value of $\displaystyle \int _{ -1 }^{ 1 } max\left\{ { \: { 2-x,2,1+x } } \right\} dx$ is?
• A. $4$
• B. $2$
• C. none of these
• D. $\displaystyle \frac{9}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle\int_{1}^{2}\dfrac{1}{x(1+\log x)^{2}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $I=\displaystyle \int _{0}^{1}\dfrac{\tan{x}}{\sqrt{x}}\ dx$ then
• A. $I > \dfrac{2}{3}$
• B. $I < \dfrac{5}{9}$
• C. $I < \dfrac{1}{3}$
• D. $I < \dfrac{2}{3}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate: $\displaystyle \int e^{x}\sin \left ( e^{x} \right )dx$
• A. $\displaystyle \cos e^{x}+C$
• B. $\displaystyle \left ( \cos e^{x} \right )^{-1}+C$
• C. $\displaystyle \sin e^{x}+C$
• D. $\displaystyle -\cos e^{x}+C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Hard
Value of $\displaystyle \int_{-1}^{1}\displaystyle \frac{x}{\sqrt{1-x^{2}}}\log \displaystyle \frac{1+x}{1-x}\: dx$ is
• A. $-\pi$
• B. $2$
• C. $-2$
• D. $2\pi$