Mathematics

# Evaluate:$\displaystyle\int{\dfrac{x\,dx}{{x}^{2}+2x+1}}$

##### SOLUTION
$\displaystyle\int{\dfrac{x\,dx}{{x}^{2}+2x+1}}$
$=\displaystyle\int{\dfrac{x\,dx}{{\left(x+1\right)}^{2}}}$
$=\displaystyle\int{\dfrac{\left(x+1-1\right)\,dx}{{\left(x+1\right)}^{2}}}$
$=\displaystyle\int{\dfrac{\left(x+1\right)\,dx}{{\left(x+1\right)}^{2}}}-\displaystyle\int{\dfrac{dx}{{\left(x+1\right)}^{2}}}$
$=\displaystyle\int{\dfrac{dx}{x+1}}-\displaystyle\int{{\left(x+1\right)}^{-2}dx}$
$=\ln{\left|x+1\right|}-\dfrac{{\left(x+1\right)}^{-2+1}}{-2+1}+c$
$=\ln{\left|x+1\right|}+\dfrac{1}{x+1}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
If $\int _{ 1 }^{ k }{ \left( 2x-3 \right) } dx=12$, then $k=....$
• A. $5$ and $2$
• B. $2$ and $-5$
• C. None of these
• D. $-2$ and $5$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integrals:
$\displaystyle \int { \sec ^{ 6 }{ x } \tan ^{ }{ x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve $\displaystyle\int\dfrac{{{{\left( {\log \,x} \right)}^2}}}{x}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\displaystyle\int^{\pi}_0\dfrac{x^2}{(1+\sin x)^2}dx=A$ then $\displaystyle\int^{\pi}_0\dfrac{2x^2\cos^2(x/2)}{(1+\sin x)^2}dx=?$
• A. $A-\pi +\pi^2$
• B. $A-\pi -\pi^2$
• C. $A+2\pi -\pi^2$
• D. $A+\pi -\pi^2$

1 Verified Answer | Published on 17th 09, 2020

Q5 Multiple Correct Hard
If $\displaystyle \int_{0}^{\alpha}\frac{dx}{1-\cos \alpha \cos x}=\frac{A}{\sin \alpha}+B(a\neq 0)$
Then possible values of $A$ and $B$ are
• A. $\displaystyle A=\frac{\pi}{6},B=\frac{\pi}{\sin \alpha}$
• B. $\displaystyle A=\pi ,B=\frac{\pi}{\sin \alpha}$
• C. $\displaystyle A=\frac{\pi}{2},B=0$
• D. $\displaystyle A=\frac{\pi}{4},B=\frac{\pi}{4\sin \alpha}$