Mathematics

# Evaluate:$\displaystyle\int x^n\log_ex\ dx$

##### SOLUTION
Now,
$\displaystyle\int x^n\log_ex\ dx$
$=\log_ex .\dfrac{x^{n+1}}{n+1}$$-\displaystyle\int \dfrac{1}{x}\dfrac{x^{n+1}}{n+1}\ dx =\log_ex .\dfrac{x^{n+1}}{n+1}$$-\dfrac{x^{n+1}}{(n+1)^2}\ +c$ [ Where $c$ being integrating constant]

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Medium
Integrate with respect to x:
$(e^x+1)^2e^x$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Find $\int \frac { x ^ { 4 } d x } { ( x - 1 ) \left( x ^ { 2 } + 1 \right) }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Integrate :  $dx-dy+ydx+xdy=0$.
• A. $x^2-y^2+2xy=C$.
• B. $x^3-y^3+3xy=C$.
• C. $x^4-y^4+4xy=C$.
• D. $x-y+xy=C$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Let $f : R \rightarrow R, g: R \rightarrow R$ be continuous functions. Then the value of integral
$\displaystyle \int_{\ell n \lambda}^{\ell n 1/\lambda}\dfrac{f\left(\dfrac{x^{2}}{4}\right)[f(x)-f(-x)]}{g\left(\dfrac{x^{2}}{4}\right)[g(x)+g(-x)]}dx$ is :
• A. a non-zero constant
• B. zero
• C. $2$
• D. depend on $\lambda$

$\displaystyle \int\dfrac {\cos 2x+2\sin^{2}x}{\cos^{2}x}dx$