Mathematics

Evaluate:
$$\displaystyle\int e^x(x^2+2x)\ dx$$.


SOLUTION
Now,
$$\displaystyle\int e^x(x^2+2x)\ dx$$
$$=x^2e^x-\displaystyle\int e^x(2x)\ dx$$$$+\displaystyle\int e^x(2x)\ dx$$ [ Using method of by parts]
$$=x^2e^x+c$$. [ Where $$c$$ is integrating constant]
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of the definite integral $$\displaystyle \int_{-0}^{+1}(x)In (f+2^{x}+3^{x}+6^{x})dx$$ equa;s
  • A. $$\dfrac {In 2+In 3}{3}$$
  • B. $$In 2+In 3$$
  • C. $$\dfrac {In 2+In 3}{4}$$
  • D. $$\dfrac {In 2+In 3}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
The value of integratin $$\displaystyle \int x\sec^{-1}xdx$$ is
  • A. $$\dfrac{1}{2}x^{2}\sec^{-1}x+\displaystyle \frac{1}{2}\sqrt{x^{2}-1}+c$$
  • B. $$x^{2}\sec^{2}x+\displaystyle \frac{1}{2}\sqrt{x^{2}-1}+c$$
  • C. $$x^{2}\sec^{2}x-\dfrac{1}{2}\sqrt{x^{2}-1}+c$$
  • D. $$\displaystyle \frac{1}{2}x^{2}\sec^{-1}x-\frac{1}{2}\sqrt{x^{2}-1}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The value of $$\displaystyle\int_{\displaystyle-2\pi}^{\displaystyle5\pi}{\cot^{-1}{(\tan{x})}dx}$$ is equal to
  • A. $$\displaystyle\frac{7\pi}{2}$$
  • B. $$\displaystyle\frac{3\pi}{2}$$
  • C. $$\pi^2$$
  • D. $$\displaystyle\frac{7\pi^2}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Show that $$\displaystyle \int \left ( e^{\log x}+\sin x \right )\cos  dx=x\sin x+\cos x+\frac{1}{2}\sin^{2}x.$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer