Mathematics

Evaluate:
$$\displaystyle\int \dfrac{\sin^3xdx}{(\cos^4x+3\cos^2x+1)\tan^{-1}(\sec x+\cos x)}$$.


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate:
$$\displaystyle \int\limits_2^0 {\dfrac{1}{{\sqrt {4 - x^2} }}} dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int { \frac { { e }^{ \log { \tan { x }  }  } }{ 3\tan ^{ 2 }{ x+1 }  } dx } =$$
  • A. $$\dfrac {1}{4}\log |3\sin^{2}x+\cos^{2}x|+c$$
  • B. $$\log |3\tan^{2}x+1|+c$$
  • C. $$\dfrac {1}{2}\log |3\sin^{2}x+\cos^{2}x|+c$$
  • D. $$\log |3\sin^{2}x+\cos^{2}x|+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\int {\frac{{dx}}{{\left( {4 + 3{x^2}} \right)\sqrt {3 - 4{x^2}} }} = } $$
  • A. $$\frac{1}{5}{\tan ^{ - 1}}\frac{{2x}}{{\sqrt {3 - 4{x^2}} }} + c$$
  • B. $$\frac{1}{{10}}{\tan ^{ - 1}}\frac{{5x}}{{2\sqrt {3 - 4{x^2}} }} + c$$
  • C. $$\frac{1}{5}{\tan ^{ - 1}}\frac{{5x}}{{2\sqrt {3 - 4{x^2}} }} + c$$
  • D. $$\frac{1}{{10}}{\tan ^{ - 1}}\frac{{5x}}{{\sqrt {3 - 4{x^2}} }} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve:
$$\int\limits_0^1 {{{\tan }^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer