Mathematics

# Evaluate:$\displaystyle\int _{1}^{2} \left(\dfrac{x-1}{x^{2}}\right)e^{x}dx$

##### SOLUTION
$\displaystyle \int_{1}^{2} (\frac{x-1}{x^{2}})e^{x}dx$
$\displaystyle \int_{1}^{2} \frac{e^{(x-1)}}{x^{2}}dx$
$\displaystyle \frac{-e^{x}(x-1)}{x}|_{1}^{2}-\int_{1}^{2}-e^{x}dx$  here $\Rightarrow u = e^{x}(x-1);v^{1} = \frac{1}{x^{2}}$
$\displaystyle \frac{-e^{x}(x-1)}{x}+e^{x}|_{1}^{2}$
$\displaystyle \frac{-e^{2}(2-1)}{2}+e^{2}-\frac{e^{1}(1-1)}{1}+e^{1}$
$\displaystyle [\frac{-e^{2}}{2}+e^{2}-e]$
Solution of Given Definite Integral

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Subjective Medium
Evaluate $\int {\dfrac{{2x - 3}}{{\sqrt {{x^2} + x + 1} }}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate:
$\displaystyle \int \dfrac { 1 } { x - \sqrt { x } } d x$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate the integral
$\displaystyle \int_{0}^{1}\tan^{-1}x \ dx$
• A. $\dfrac{\pi}{4}-\dfrac{1}{4} log2$
• B. $\displaystyle \frac{\pi}{4}+\frac{1}{2} log 2$
• C. $\displaystyle \frac{\pi}{4}+\frac{1}{4} log 2$
• D. $\displaystyle \frac{\pi}{4}-\frac{1}{2} log2$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The integral $\displaystyle \int x { \cos^{ -1 }\left(\displaystyle \frac { 1-x^{ 2 } }{ 1+x^{ 2 } } \right) dx }$ is equal to :
(Note : $(x>0)$)
• A. $-x + (1+x^2) \cot^{-1} x+c$
• B. $-x-(1+x^{2})\tan^{-1}xc$
• C. $x-(1+x^2)\cot^{-1}x+c$
• D. $-x+(1+x^{2})\tan^{-1}x+c$

If $f,g,h$ be continuous functions on $[0,a]$ such that $f(a-x)=-f(x),g(a-x)=g(x)$ and $3h(x)-4h(a-x)=5$ then  $\displaystyle \int_0^a f(x)g(x)h(x)dx=0$