Mathematics

Evaluate:$\displaystyle\int_{0}^{\frac{\pi}{2}}{{\cos}^{2}{x}\,dx}$

SOLUTION
$\displaystyle\int_{0}^{\frac{\pi}{2}}{{\cos}^{2}{x}\,dx}$
$=\dfrac{1}{2}\displaystyle\int_{0}^{\frac{\pi}{2}}{2{\cos}^{2}{x}\,dx}$
We know that $\cos{2x}=2{\cos}^{2}{x}-1\Rightarrow\,2{\cos}^{2}{x}=1+\cos{2x}$
$=\dfrac{1}{2}\displaystyle\int_{0}^{\frac{\pi}{2}}{\left(1+\cos{2x}\right)\,dx}$
$=\dfrac{1}{2}\displaystyle\int_{0}^{\frac{\pi}{2}}{dx}+\dfrac{1}{2}\displaystyle\int_{0}^{\frac{\pi}{2}}{\cos{2x}\,dx}$
$=\dfrac{1}{2}\left[x\right]_{0}^{\frac{\pi}{2}}+\dfrac{1}{2}\left[\dfrac{\sin{2x}}{2}\right]_{0}^{\frac{\pi}{2}}$
$=\dfrac{1}{2}\left[x\right]_{0}^{\frac{\pi}{2}}+\dfrac{1}{4}\left[\sin{2x}\right]_{0}^{\frac{\pi}{2}}$
$=\dfrac{1}{2}\left[\dfrac{\pi}{2}-0\right]-\dfrac{1}{4}\left[\sin{\pi}-\sin{0}\right]$
$=\dfrac{\pi}{4}-0$
$=\dfrac{\pi}{4}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Medium
$\int - x \cdot e ^ { - x ^ { 2 } / 2 } d x$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\int { \frac { { x }^{ 4 } }{ { x }^{ 2 }+1 } dx }$ is equal to
• A. $\dfrac {x^{3}}{3}+x+\tan^{-1}x+C$
• B. $\dfrac {x^{2}}{2}-x+\tan^{-1}x+C$
• C. $\dfrac {x^{3}}{3}-x-\tan^{-1}x+C$
• D. $\dfrac {x^{2}}{3}-x+\tan^{-1}x+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Find the value of $\int _{ 0 }^{ \pi }{ \dfrac { \sin { 2kx } }{ \sin { x } } dx }$ where $k\in I$.
• A. $\dfrac {\pi}{2}$
• B. $\pi$
• C. $\dfrac {3\pi}{2}$
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Write a value of
$\displaystyle \int { \cfrac { \log { { x }^{ n } } }{ x } } dx$

Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$