Mathematics

# Evaluate:$\displaystyle\frac { 1 } { 15 } \int \frac { d t } { 4 + t ^ { 2 } } + \frac { 4 } { 15 } \int \frac { 6 d t } { 1 + 4 t ^ { 2 } }$

##### SOLUTION

$\dfrac{1}{15}\displaystyle\int \dfrac{dt}{4+t^2}+\dfrac{4}{15}\displaystyle\int \dfrac{6dt}{1+4t^2}$

$=\dfrac{1}{15}\cdot \dfrac{1}{2}\tan^{-1}\left(\dfrac{t}{2}\right)+\dfrac{24}{15\times 4}\displaystyle\int \dfrac{dt}{\left(\dfrac{1}{2}\right)^2+t^2}$

$=\dfrac{1}{30}\tan^{-1}\left(\dfrac{t}{2}\right)+\dfrac{6}{15}\cdot\dfrac{1}{1/2}\tan^{-1}\left(\dfrac{t}{\dfrac{1}{2}}\right)+c$

$=\dfrac{1}{30}\tan^{-1}\left(\dfrac{t}{2}\right)+\dfrac{4}{5}\tan^{-1}(2t)+c$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
$\displaystyle \int { \cfrac { { x }^{ 3 } }{ \sqrt { 1+x^2 } } } dx$
• A. $\sqrt { 1+x } -\cfrac { x }{ 3 } { \left( 1+{ x }^{ 2 } \right) }^{ 3/2 }+c$
• B. $x\sqrt { 1+{ x }^{ 2 } } +\cfrac { 2 }{ 3 } { \left( 1+{ x }^{ 2 } \right) }^{ 3/2 }+c$
• C. ${ x }^{ 2 }\sqrt { 1+{ x }^{ 2 } } -\cfrac { 1 }{ 3 } { \left( 1+{ x }^{ 2 } \right) }^{ 3/2 }+c$
• D. $\dfrac{{ x }^{ 2 }\sqrt { 1+{ x }^{ 2 } }}{3}-\cfrac { 2 }{ 3 } {\sqrt{1+{ x }^{ 2 }} }+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 One Word Hard
Let $\displaystyle \int \dfrac{dx}{(x+a)^{\tfrac{8}{7}}(x-b)^\tfrac{6}{7}}=\mu (x-b)^\tfrac{1}{7}+C$, where $'\mu '$; is a function of $'x'$, then $\left [\displaystyle \dfrac{\mu (a+b)}{(x+a)^\tfrac{1}{7}} \right ]$ equals to

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve
$\displaystyle \int{\dfrac{x}{(x^{2}+1)(x+1)}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int _0^1 3x^2+2x dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Solve $\displaystyle \int\sqrt{\dfrac{a-x}{a+x}}dx$