Mathematics

# Evaluate:$\displaystyle \int x+5 dx$

##### SOLUTION
Given $\displaystyle \int x+5 dx$

$=\displaystyle \int xdx +\int 5 dx$

$=\dfrac {x^2}2+5x+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int { \frac { dx }{ { x }^{ 1/5 }{ \left( 1+{ x }^{ 4/5 } \right) }^{ 1/2 } } }$ equals
• A. $\displaystyle \sqrt { 1+{ x }^{ 4/5 } } +c$
• B. $\displaystyle { x }^{ 4/5 }{ \left( 1+{ x }^{ 4/5 } \right) }^{ 1/2 }+c$
• C. None of these
• D. $\displaystyle \frac { 5 }{ 2 } \sqrt { 1+{ x }^{ 4/5 } } +c$

1 Verified Answer | Published on 17th 09, 2020

Q2 One Word Medium
Evaluate:$\displaystyle \int \frac{dx}{(x^{2}+4x+8)}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $a_{k}=\displaystyle \int _{0}^{\pi}\dfrac{\sin{(2k-1)}x}{\sin{x}}dx$, then
• A. $a_{1},a_{2},.....$ are in G.P
• B. $a_{1},a_{2},.....$ are in H.P
• C. $a_{1},a_{2},.....$ form a constant sequences
• D. $a_{1},a_{2},.....$ are in A.P

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\sec^{p} x.{\it \tan}xdx=$
• A. $\displaystyle \frac{\sec^{p-1}x}{p-1}+c$
• B. $\displaystyle \frac{\sec^{p+1}x}{p+1}+c$
• C. $\displaystyle \frac{\sec^{p-1}x}{p+1}+c$
• D. $\displaystyle \frac{\sec^{p}x}{p}+c$

$\int(2x^2-3 \, sin x+5 \sqrt{x})dx$