Mathematics

Evaluate:
$$\displaystyle \int_{0}^{\dfrac {\pi}{4}}\dfrac {\sin x+\cos x}{9+16\sin 2x}dx$$ 


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Solve
$$\displaystyle \int { \sqrt {  { a-x }  }  } dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\int \dfrac{x - 1}{(x - 3) (x - 2) } dx = $$
  • A. $$log (x - 3)^2 - log (x - 2) + c$$
  • B. $$log (x - 3) + log (x - 2) + c$$
  • C. $$log (x - 3)^2 + log (x - 2) + c$$$
  • D. $$log (x - 3) - log (x - 2) + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int\frac{e^{x}}{(2e^{x}-3)^{2}}dx=$$
  • A. $$ \displaystyle \frac{1}{2e^{x}-3}+c$$
  • B. $$\displaystyle \frac{1}{2(2e^{x}-3)^{2}}+c$$
  • C. $$\displaystyle \frac{1}{(2e^{x}-3)^{2}}+c$$
  • D. $$\displaystyle \frac{-1}{2(2e^{x}-3)}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\int_{}^{} {\dfrac{{{{\sec }^8}x}}{{\cos ecx}}dx}  = $$
  • A. $$\dfrac{{{{\cos }^7}x}}{7} + c$$
  • B. $$\dfrac{7}{{{{\cos }^7}x}} + c$$
  • C. $$\dfrac{1}{{{{\cos }^7}x}} + c$$
  • D. $$\dfrac{1}{{7{{\cos }^7}x}} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let $$\displaystyle 2I_{1}+I_{2}=\int \frac {e^{x}}{e^{2x}+e^{-2x}}dx$$  and  $$\displaystyle I_{1}+2I_{2}=\int \frac {e^{-x}}{e^{2x}+e^{-2x}}dx$$
On the basis of above information, answer the following questions :

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer