Mathematics

# Evaluate:$\displaystyle \int _0^{3} x^2+2x dx$

##### SOLUTION
$\displaystyle \int _0^3 x^2+2x dx$

By using $\displaystyle\int{{x}^{n}dx}=\dfrac{{x}^{n+1}}{n+1}+c$

$=\left. \dfrac{x^3}3+x^2 \right|_0^3$

$= 9+9-0-0=18$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate:$\displaystyle\int_{0}^{\frac{\pi}{2}}{{\sin}^{2}{x}\,dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find an anti derivative (or integral) of the given function by the method of inspection.
$\cos 3x$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int _{ 0 }^{ a }{ \left( f(x)+f(-x) \right) } dx=$
• A. $-\int _{ -a }^{ a }{ f(x)dx }$
• B. $0$
• C. $-\int _{ -a }^{ a }{ f(-x)dxz }$
• D. $2\int _{ 0 }^{ a }{ f(x)dx }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $\displaystyle I = \int \frac {dx}{(2 \sin x + \sec x)^4}$, then I equals
• A. $\displaystyle \frac {1}{5 \tan^5 x} + \frac {1}{3 \tan^6 x} - \frac {I}{(2 \sin x + \sec x)^3} + C$
• B. $\displaystyle \frac {-1}{3(2 \sin x + \sec)^3} + \tan^{-1} (3\sqrt {\tan x}) + C$
• C. $\displaystyle \frac {-1}{3(2 \sin x + \sec x)^3} - \tan^{-1} (3\sqrt {\tan x}) + C$
• D. $\displaystyle -\frac {1}{5 \tan^5 x} + \frac {1}{3 \tan^6 x} - \frac {2}{7 \tan^7 x} + C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int_2^3\dfrac{dx}{x^2-1}$
• A. $log\dfrac{3}{2}$
• B. $2log\dfrac{3}{2}$
• C. $\log\dfrac{3}{2}$
• D. $\dfrac{1}{2}log\dfrac{3}{2}$