Mathematics

# Evaluate: $\displaystyle \int\limits_3^5 {\frac{{{x^2}}}{{{x^2} - 4}}} dx$

##### ANSWER

$2 - {\log _e}\left( {\frac{{15}}{7}} \right)$

##### SOLUTION
$\frac { { x }^{ 2 } }{ { x }^{ 2 }-4 } =\frac { { x }^{ 2 }-4+4 }{ { x }^{ 2 }-4 } =1+\frac { 4 }{ { x }^{ 2 }-4 } =1+\frac { 4 }{ (x+2)(x-2) }= 1+\frac { 1 }{ (x+2) } -\frac { 1 }{ (x-2) }$
Thus, $\int { \frac { { x }^{ 2 } }{ { x }^{ 2 }-4 } dx=\int { \left( 1+\frac { 1 }{ \left( x+2 \right) } -\frac { 1 }{ \left( x-2 \right) } \right) dx } }$
$\int _{ 3 }^{ 5 }{ \frac { { x }^{ 2 } }{ { x }^{ 2 }-4 } } dx=\left[ x+\log { (x+2) } -\log { (x-2) } \right] \overset { 5 }{ \underset { 3 }{ } }$
$= \left[ 5+\log { 7 } -\log { 3 } \right] -\left[ 3+\log { 5 } -\log { 1 } \right] =2+\log{\dfrac{7}{15}}=2-\log{\dfrac{15}{7}}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
The value of the integral $\displaystyle \int_{0}^{\dfrac{\pi ^{2}}{4}}\sin \sqrt{x}\: dx$ is
• A. $1$
• B. $1/2$
• C. $3/2$
• D. none of these

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
What is $\displaystyle\int _{ 1 }^{ 2 }{ \ln { x } dx }$ equal to?
• A. $\ln { 2 }$
• B. $1$
• C. $\ln { \left( \dfrac { e }{ 4 } \right) }$
• D. $\ln { \left( \dfrac { 4 }{ e } \right) }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the definite integral:
$\displaystyle \int_{0}^{\pi /2} \sin 2x\ dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Show that $\displaystyle \int \frac{x dx}{(px+q)^{3/2}}=\frac{1}{p^{2}}\left \{ \sqrt{px+q}+\frac{q}{\sqrt{(px+q)}} \right \}\cdot$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Assertion & Reason Hard
##### ASSERTION

If $n>1$ then Statement -1: $\displaystyle \int_{0}^{\infty}\frac{dx}{1+x^{n}}=\int_{0}^{1}\frac{dx}{(1-x^{n})^{1/n}}$

##### REASON

Statement -2: $\displaystyle \int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx$

• A. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
• B. Assertion is correct but Reason is incorrect
• C. Both Assertion and Reason are incorrect
• D. Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020