Mathematics

# Evaluate: $\displaystyle \int_{1/3}^{1}\frac{(x-x^{3})^{1/3}}{x^{4}}dx$

$6$

##### SOLUTION

$\displaystyle \int_{\frac {1}{3}}^{1} \dfrac {(x – x^{3})^{\frac {1}{3}}}{x^{4}} dx = \int_{\frac {1}{3}}^{1} \frac {(x^{3})^{\frac {1}{3}} \left (\dfrac {1}{x^{2}} – 1\right )^{\frac {1}{3}}}{x^{4}} dx$

$\displaystyle = \int_{\dfrac {1}{3}}^{1} \dfrac {\left (\dfrac {1}{x^{2}} – 1\right )^{\frac {1}{3}}}{x^{3}} dx$           (let $\dfrac {1}{x^{2}} – 1 = t$)

$\displaystyle = \int_{8}^{0} \dfrac{t^{\frac{1}{3}}}{-2} dt$    $\therefore \dfrac {-2}{x^{3}} dx = dt$

$= -\dfrac {1}{2}\left (\dfrac {t^{4/3}}{4/3}\right )_{8}^{0} = 6$.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109

#### Realted Questions

Q1 Single Correct Medium

$\displaystyle \int_{0}^{4}\sqrt{16-x^{2}}d_{X}=$
• A. $\displaystyle \frac{\pi}{4}$
• B. $\pi$
• C. $16\pi$
• D. $4\pi$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int _{ 0 }^{ 400\pi }{ \sqrt { 1-\cos { 2x } } }$
• A. $200\sqrt 2$
• B. $400\sqrt 2$
• C. $none$
• D. $800\sqrt 2$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve:
$\int {\sin ^4}x.{\cos ^2}xdx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int tan^{-1}\sqrt{\frac{1-x}{1+x}}d{x}=$
• A. $[xcos^{-1}x-\sqrt{1-x^{2}}]+c$
• B. $\displaystyle \frac{1}{2}[x cos^{-1} x+\sqrt{1-x^{2}}]+c$
• C. $x cos^{-1} x+\sqrt{1-x^{2}}+c$
• D. $\displaystyle \frac{1}{2}[x cos^{-1} x-\sqrt{1-x^{2}}]+c$

Given that for each $\displaystyle a \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$ exists. Let this limit be $g(a)$
In addition, it is given that the function $g(a)$ is differentiable on $(0, 1)$