Mathematics

# Evaluate the integrals using substitution.$\displaystyle\int^2_0x\sqrt{x+2}$ (Put $x+2=t^2$).

##### SOLUTION
$\int _{ 0 }^{ 2 }{ x\sqrt { x+2 } } dx$
Let $x+2={ t }^{ 2 }\Rightarrow dx=2tdt\quad$
$=\int _{ \sqrt { 2 } }^{ 2 }{ \left( { t }^{ 2 }-2 \right) } .t.2t.dt=2\int _{ \sqrt { 2 } }^{ 2 }{ \left( { t }^{ 4 }-2{ t }^{ 2 } \right) } dt=2{ \left[ \cfrac { { t }^{ 5 } }{ 5 } -\cfrac { 2{ t }^{ 3 } }{ 3 } \right] }_{ \sqrt { 2 } }^{ 2 }$
$=2\left[ \left( \cfrac { 32 }{ 5 } -\cfrac { 2\times 8 }{ 3 } \right) -\left( \cfrac { 4\sqrt { 2 } }{ 5 } -\cfrac { 2.2\sqrt { 2 } }{ 3 } \right) \right] =2\left( \cfrac { 16 }{ 15 } +\cfrac { 8\sqrt { 2 } }{ 15 } \right) =\cfrac { 32+16\sqrt { 2 } }{ 15 }$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integrate the function    $\displaystyle \frac {x^2}{\sqrt {x^6+a^6}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\displaystyle \int { \frac { 1 }{ { 9x }^{ 2 }-1 } dx }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve:-
$\int {{3^x}}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate:
$\displaystyle\int { \frac { { x }^{ 4 }+4 }{ { x }^{ 2 }-2x+2 } } dx$
• A. $\dfrac{x^3}{2}+x^2+2x+C$
• B. $\dfrac{x^3}{3}+x^2+x+C$
• C. $\dfrac{x^3}{3}+x^2-2x+C$
• D. $\dfrac{x^3}{3}+x^2+2x+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
The average value of a function f(x) over the interval, [a,b] is the number $\displaystyle \mu =\frac{1}{b-a}\int_{a}^{b}f\left ( x \right )dx$
The square root $\displaystyle \left \{ \frac{1}{b-a}\int_{a}^{b}\left [ f\left ( x \right ) \right ]^{2}dx \right \}^{1/2}$ is called the root mean square of f on [a, b]. The average value of $\displaystyle \mu$ is attained id f is continuous on [a, b].

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020