Mathematics

Evaluate the integral, $\int _{ 0 }^{ 1 }{ \cos { \left( 2\cot ^{ -1 }{ \sqrt { \dfrac { 1-x }{ 1+x } } } \right) } } dx=$

$-1/2$

SOLUTION

Its FREE, you're just one step away

Single Correct Hard Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

Realted Questions

Q1 Subjective Medium
Solve $\displaystyle \int { \dfrac { \sin { x } }{ \cos { x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Multiple Correct Medium
The possible negative values of real number 'a' such that $\overset { 0 }{ \underset { a }{ \int } } (9^{-2t}-2.9^{-t})dt\geq 0$ is
• A. -2013
• B. $-\frac{2013}{2}$
• C. -2
• D. -1

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
If $\int { \cfrac { xdx }{ \sqrt { 1+{ x }^{ 2 }+\sqrt { { \left( 1+{ x }^{ 2 } \right) }^{ 3 } } } } } =k\sqrt { 1+\sqrt { 1+{ x }^{ 2 } } } +C$ then k equals to

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\phi (x) = f(x) + xf^1 (x)$ then $\int {\phi (x)dx}$ is equal to
• A. $(x + 1) f(x) + k$
• B. $(x - 1) f (x) + k$
• C. None of these
• D. $xf(x) + k$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The function$int {:R \to \left[ { - \frac{1}{2},\frac{1}{2}} \right]}$ defined as
$\int {(x) = \frac{x}{{1 + x2}}}$ is ( 2017 main offline)
• A. surjective but not injective
• B. neither injective nor surjective
• C. invertible
• D. Injective but not Surjective