Mathematics

# Evaluate the integral $\displaystyle\int_{-4}^{4}|x+2|\ dx$.

##### SOLUTION
First find where
$x+2>0\\ x>-2$

Thus the value of  the function in $\left[ -4,-2 \right]$ is $\left| x+2 \right| =-\left( x+2 \right)$
and  the value of function in the interval $\left[ -2,4 \right]$ is $\left| x+2 \right| =x+2$.

Hence the integral can be  written as,
$\int _{ -4 }^{ 4 }{ \left| x+2 \right| dx } =\int _{ -4 }^{ -2 }{ -\left( x+2 \right) } dx+\int _{ -2 }^{ 4 }{ \left( x+2 \right) dx } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =-{ \left[ \frac { { x }^{ 2 } }{ 2 } +2x \right] }_{ -4 }^{ -2 }+{ \left[ \frac { { x }^{ 2 } }{ 2 } +2x \right] }_{ -2 }^{ 4 }\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =-\left[ 2-4-(8-8) \right] +[8+8-(2-4)]\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =2+16+2\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =20$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle\int^{\pi/2}_0\dfrac{\sin^nx}{(\sin^nx+\cos^nx)}dx=?$
• A. $\dfrac{\pi}{2}$
• B. $1$
• C. $0$
• D. $\dfrac{\pi}{4}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\dfrac {dy}{dx}=x^2$ find $y$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
By using the properties of definite integrals, evaluate the integral   $\displaystyle \int_0^{2\pi}\cos^5 x dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int { \left( \cfrac { 4{ e }^{ x }-25 }{ 2{ e }^{ x }-5 } \right) } dx=Ax+B\log { \left| 2{ e }^{ x }-5 \right| } +c$, then
• A. $A=5,B=3$
• B. $A=-5,B=3$
• C. $A=-5,B=-3$
• D. $A=5,B=-3$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$