Mathematics

# Evaluate the integral $\displaystyle\int_{-3}^{3}|x+1|\ dx$.

##### SOLUTION
$I=\displaystyle\int_{-3}^{3}|x+1|\ dx$

$I=\displaystyle\int_{-3}^{-1}|x+1|\ dx+\displaystyle\int_{-1}^{3}(x+1)\ dx$

$=\left[\dfrac{(x+1)^{2}}{2}\right]_{-3}^{-1}+\left[\dfrac{(x+1)^{2}}{2}\right]_{-1}^{3}$

$=0-\dfrac 42 +\dfrac {16}2-0$

$=6$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate the function   $\displaystyle \frac {\sin^{-1}x}{\sqrt {1-x^2}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\int \dfrac{1}{{\sqrt {{x^2} + 2x + 2} }}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of $\displaystyle \int_{0}^{\pi}\dfrac{xdx}{1+cos\alpha.sin x}(0<\alpha<\pi)$ is
• A. $\dfrac{\pi}{sin\alpha}$
• B. $\dfrac{\alpha}{sin\alpha}$
• C. $\dfrac{sin\alpha}{\alpha}$
• D. $\dfrac{\pi\alpha}{sin\alpha}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $\displaystyle \int \dfrac{x^3-8}{x^3\sqrt{x^4-x^3+2}}dx=\dfrac{k.\sqrt{x^4-x^3+2}}{x^2}+C$, then the value of $k$ is (where $C$ is constant of integration)
• A. $2$
• B. $7$
• C. $4$
• D. $3$

Evaluate :$\displaystyle \int \dfrac{dx}{x(x^2+1)}$