Mathematics

# Evaluate the integral $\displaystyle \int_{3}^{5}(2-x)dx$.

##### SOLUTION
Consider, $I=\displaystyle \int_{3}^{5}(2-x)dx$

$\Rightarrow$ $I=\left[2x-\dfrac {x^2}2\right]_3^5$

$\Rightarrow$ $I=10-\dfrac {25}2-6+\dfrac 92$

$\Rightarrow$ $I=4-8=-4$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate:

$\int x.\sin{2x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int{\dfrac{dx}{{x}^{1/3}+{x}^{1/2}}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\frac{1-\sqrt{x}}{1+\sqrt[4]{x}}dx=$
• A. $x+\displaystyle \dfrac{4}{5}x^{5/4}+c$
• B. $x-\displaystyle \dfrac{2}{5}x^{5/4}+c$
• C. $x-\displaystyle \dfrac{3}{5}x^{5/4}+c$
• D. $x-\displaystyle \dfrac{4}{5}x^{5/4}+c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The value of $\int_{0}^{2}\dfrac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)}$ is equal to
• A. $-\dfrac{1}{8\sqrt{21}}\log \left | \dfrac{2-\sqrt{21}}{2+\sqrt{21}} \right |$
• B. $-\dfrac{1}{8\sqrt{21}}\log \left | \dfrac{2+\sqrt{21}}{\sqrt{21}-2} \right |$
• C. $-\dfrac{1}{8\sqrt{21}}\left \{ \log \left | \dfrac{2-\sqrt{21}}{2+\sqrt{21}}\right |-\log \left | \dfrac{2+\sqrt{21}}{\sqrt{21}-2} \right | \right \}$
• D. None of these

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
Solve: $\displaystyle \int\dfrac{1}{x(x^{4}-1)}dx$
• A. $-\dfrac{1}{4}\ln\left|\dfrac{x^{4}-1}{x^{4}}\right|+c$
• B. $-\dfrac{1}{4}\ln\left|\dfrac{x^{2}-1}{x^{2}}\right|+c$
• C. $\dfrac{1}{4}\ln\left|\dfrac{x^{2}-1}{x^{2}}\right|+c$
• D. $\dfrac{1}{4}\ln\left|\dfrac{x^{4}-1}{x^{4}}\right|+c$