Mathematics

# Evaluate the given integral.$\displaystyle\int{\dfrac{dx}{{x}^{\frac{3}{2}}}}$

##### SOLUTION
$I=\displaystyle\int{\dfrac{dx}{{x}^{\frac{3}{2}}}}$

$=\displaystyle\int{{x}^{-\frac{3}{2}}dx}$

$=\dfrac{{x}^{-\frac{3}{2}+1}}{-\dfrac{3}{2}+1}+c$

$=\dfrac{{x}^{\frac{-3+2}{2}}}{\dfrac{-3+2}{2}}+c$

$=\dfrac{{x}^{\frac{-1}{2}}}{\dfrac{-1}{2}}+c$

$=\dfrac{-2}{\sqrt{x}}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate $\displaystyle \int {\sqrt {1 + {x^2}} } dx$ is equal to:

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int\frac{(x-1)}{(x+1)(x^{2}+1)}dx=$
• A. $\displaystyle \frac{1}{2}\log|\displaystyle \frac{x+1}{\sqrt{x^{2}+1}}|+c$
• B. $\displaystyle \log|\frac{\sqrt{x^{2}+1}}{x+1}|+c$
• C. $\log|x+1 |+\displaystyle \frac{1}{2}\tan^{-1}{x}+c$
• D. $-\log|x+1 |+\tan ^{-1}{x} + c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve:
$\int {\sin x\left( {2 + 5x} \right)} dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate : $\displaystyle\int _ { 1 } ^ { 2 } \frac { \ln x } { x ^ { 2 } } d x$

Evaluate $\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}}dx$