Mathematics

Evaluate the following integration w.r.t. $$x$$
 $$x^{2}\int (1-\dfrac {2}{x})^{2}dx$$


ANSWER

$$\left[\dfrac{x^3}{3}+4x+\dfrac{4}{x^2}\right]+c$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int { \dfrac { { \left( x+\sqrt { 1+{ x }^{ 2 } }  \right)  }^{ 15 } }{ \sqrt { 1+{ x }^{ 2 } }  }  } dx=$$
  • A. $$\dfrac { { \left( x+\sqrt { 1+{ x }^{ 2 } } \right) }^{ 15 } }{ 15 } +C$$
  • B. $$\dfrac { { \left( x+\sqrt { 1+{ x }^{ 2 } } \right) }^{ 15 } }{ 30x } +C$$
  • C. $$\dfrac { { \left( x+\sqrt { 1+{ x }^{ 2 } } \right) }^{ 15 } }{ 15x } +C$$
  • D. $$\dfrac { { \left( x+\sqrt { 1+{ x }^{ 2 } } \right) }^{ 15 } }{ 30 } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
If f(x) $$If(x)=\begin{cases} \frac { { 36 }^{ x }-{ 9 }^{ x }-4^{ x }+1 }{ \sqrt { 2 } -\sqrt { 1+cosx }  } ,x\neq 0 \\ \quad \quad \quad \quad k\quad \quad \quad \quad \quad \quad \quad \quad \quad ,x=0 \end{cases}$$ is continuous at x=0, then k equals
  • A. $$16\sqrt { 2 } log\quad 2\quad log\quad 3$$
  • B. $$16\sqrt { 2 } In 6 $$
  • C. None of these
  • D. $$16\sqrt { 2 }$$ In $$2$$ In $$3$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Integrate the following function with respect to x:
$$\int { \cfrac { 1 }{ \left( { x }^{ 2 }-1 \right)  }  } dx\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate the following : $$\displaystyle\int \dfrac{1}{4x^{2}-3}.dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\displaystyle \int_1^{32}\dfrac{dx}{x^{1/5}\sqrt{1+x^{4/5}}}$$
  • A. $$\dfrac{2}{5}(\sqrt{17}-\sqrt{2})$$
  • B. $$\dfrac{5}{2}(\sqrt{17}-\sqrt{2})$$
  • C. $$\dfrac{5}{2}(\sqrt{17}+\sqrt{2})$$
  • D. $$\dfrac{2}{5}(\sqrt{17}+\sqrt{2})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer