Mathematics

Evaluate the following integrals:$\int { \sqrt { 2x-{ x }^{ 2 } } } dx\quad$

SOLUTION
Let $I=\displaystyle\int \sqrt{2 x-x^2}\ d x$

$\implies I=\displaystyle\int \sqrt{-(-2(1)(x)+x^2)}\ d x$

$\implies I=\displaystyle\int \sqrt{1^2-(1^2-2(a)(x)+x^2}\ d x$

$\implies I=\displaystyle\int \sqrt{a^2-(a-x)^2}\ d x$              $(\because (a-b)^2=a^2-2 a b+b^2)$

Put $t=1-x\implies d t=-d x$

$\implies I=-\displaystyle\int \sqrt{1^2-t^2}\ d t$

As we know that

$\displaystyle\int \sqrt{a^2-x^2}\ d x=\dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2}\text{sin}^{-1} \left(\dfrac{x}{a}\right)+C$

$I=-\dfrac{t}{2}\sqrt{1^2-t^2}-\dfrac{1^2}{2}\text{sin}^{-1} \left(\dfrac{t}{1}\right)+C$

$I=-\dfrac{1-x}{2}\sqrt{1^2-(1-x)^2}-\dfrac{1}{2}\text{sin}^{-1} \left(1-x\right)+C$

$I=\dfrac{1}{2}(x-1)\sqrt{2 x-x^2}-\dfrac{1}{2}\text{sin}^{-1} \left(1-x\right)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Single Correct Medium
Integrate: $\int \dfrac{\sec^2\sqrt{x}}{\sqrt{x}}dx$
• A. $I = 2 \cot \sqrt x+c$
• B. $I = 3 \tan \sqrt x+c$
• C. $I = 2^2 \tan \sqrt x+c$
• D. $I = 2 \tan \sqrt x+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\displaystyle\int^2_{-1}|x^3-x|dx$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integral:
$\displaystyle\int^1_0\dfrac{2x}{(1+x^2)}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve $\displaystyle \int_0^{\pi/2} \dfrac{\sin x \cos x}{\cos^2 x+3 \cos x+2}dx$

Let $\displaystyle 2I_{1}+I_{2}=\int \frac {e^{x}}{e^{2x}+e^{-2x}}dx$  and  $\displaystyle I_{1}+2I_{2}=\int \frac {e^{-x}}{e^{2x}+e^{-2x}}dx$