Mathematics

Evaluate the following integrals:
$$\int { \sqrt { 2x-{ x }^{ 2 } }  } dx\quad $$


SOLUTION
Let $$I=\displaystyle\int \sqrt{2  x-x^2}\ d x$$

$$\implies I=\displaystyle\int \sqrt{-(-2(1)(x)+x^2)}\ d x$$

$$\implies I=\displaystyle\int \sqrt{1^2-(1^2-2(a)(x)+x^2}\ d x$$

$$\implies I=\displaystyle\int \sqrt{a^2-(a-x)^2}\ d x$$              $$(\because (a-b)^2=a^2-2 a b+b^2)$$

Put $$t=1-x\implies d t=-d x$$

$$\implies I=-\displaystyle\int \sqrt{1^2-t^2}\ d t$$

As we know that

$$\displaystyle\int \sqrt{a^2-x^2}\ d x=\dfrac{x}{2}\sqrt{a^2-x^2}+\dfrac{a^2}{2}\text{sin}^{-1} \left(\dfrac{x}{a}\right)+C$$

$$I=-\dfrac{t}{2}\sqrt{1^2-t^2}-\dfrac{1^2}{2}\text{sin}^{-1} \left(\dfrac{t}{1}\right)+C$$

$$I=-\dfrac{1-x}{2}\sqrt{1^2-(1-x)^2}-\dfrac{1}{2}\text{sin}^{-1} \left(1-x\right)+C$$

$$I=\dfrac{1}{2}(x-1)\sqrt{2  x-x^2}-\dfrac{1}{2}\text{sin}^{-1} \left(1-x\right)+C$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Integrate: $$\int \dfrac{\sec^2\sqrt{x}}{\sqrt{x}}dx$$
  • A. $$I = 2 \cot \sqrt x+c$$
  • B. $$I = 3 \tan \sqrt x+c$$
  • C. $$I = 2^2 \tan \sqrt x+c$$
  • D. $$I = 2 \tan \sqrt x+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate: $$\displaystyle\int^2_{-1}|x^3-x|dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate the following integral:
$$\displaystyle\int^1_0\dfrac{2x}{(1+x^2)}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve $$\displaystyle \int_0^{\pi/2} \dfrac{\sin x \cos x}{\cos^2 x+3 \cos x+2}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let $$\displaystyle 2I_{1}+I_{2}=\int \frac {e^{x}}{e^{2x}+e^{-2x}}dx$$  and  $$\displaystyle I_{1}+2I_{2}=\int \frac {e^{-x}}{e^{2x}+e^{-2x}}dx$$
On the basis of above information, answer the following questions :

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer