Mathematics

# Evaluate the following integrals:$\int { \cfrac { \cos { 2x } }{ \sqrt { \sin ^{ 2 }{ 2x } +8 } } } dx$

##### SOLUTION
Now,

$\int { \cfrac { \cos { 2x } }{ \sqrt { \sin ^{ 2 }{ 2x } +8 } } } dx$

$=\dfrac{1}{2}\int { \cfrac { 2\cos { 2x } }{ \sqrt { \sin ^{ 2 }{ 2x } +8 } } } dx$

$=\dfrac{1}{2}\int { \cfrac { d(\sin { 2x } ) }{ \sqrt { \sin ^{ 2 }{ 2x } +8 } } }$

$=\dfrac{1}{2}\log|(\sin 2x)+\sqrt{\sin^2 2x+8}|+c$. [ Where $c$ is integrating constant]

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle{\int}_{1}^{2}\dfrac{dx}{\left(x^{2}-2x+4\right)^{\tfrac{3}{2}}}=\dfrac{k}{k+5}$, then $k$ is equal to
• A. $2$
• B. $3$
• C. $4$
• D. $1$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the function    $\cfrac {1}{\sqrt {(x-1)(x-2)}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integral:
$\int { \tan ^{ 3/2 }{ x } \sec ^{ 2 }{ x } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Evaluate the integral
$\displaystyle \int_{0}^{a}f(x)dx+\int_{0}^{a}f(2a-x)dx$
• A. $2\displaystyle \int_{0}^{a}f(x)dx$
• B. $\displaystyle \int_{0}^{a}f(x)dx$
• C. $\displaystyle \int_{0}^{a}f(a+x)dx$
• D. $\displaystyle \int_{0}^{2a}f(x)dx$

The value of $\left(\int_{0}^{\pi/6} sec^{2} x dx\right)^2$ is: