Mathematics

Evaluate the following integrals
$$\int { \cfrac { 1 }{ 1-\tan { x }  }  } dx\quad $$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Solve $$\displaystyle\int\dfrac {\sqrt {\tan x}}{\sin x \cos x}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle\int { \left( \cfrac { x-a }{ x } -\cfrac { x }{ x+a }  \right)  } dx$$ is equal to
  • A. $$\log { \left| \cfrac { x+a }{ x } \right| } +C$$
  • B. $$a\log { \left| \cfrac { x }{ x+a } \right| } +C$$
  • C. $$\log { \left| \cfrac { x }{ x+a } \right| } +C$$
  • D. $$a\log { \left| \cfrac { x-a }{ x+a } \right| } +C$$
  • E. $$a\log { \left| \cfrac { x+a }{ x } \right| } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
$$\displaystyle\int^{\dfrac{\pi}{4}}_0\dfrac{x\sin x}{\cos^3x}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$\int ( \sin 2 x - \cos 2 x ) d x = \frac { 1 } { \sqrt { 2 } } \sin ( 2 x - a ) + C$$ then 
  • A. $$a = \frac { 5 \pi } { 4 } -2, C \in R$$
  • B. $$a = \frac { \pi } { 4 } , C \in R$$
  • C. $$a = \frac { \pi } { 2 } , C \in R$$
  • D. $$a = \frac { 5 \pi } { 4 } , C \in R$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
The function$$int {:R \to \left[ { - \frac{1}{2},\frac{1}{2}} \right]} $$ defined as 
$$\int {(x) = \frac{x}{{1 + x2}}} $$ is ( 2017 main offline)
  • A. surjective but not injective
  • B. neither injective nor surjective
  • C. invertible
  • D. Injective but not Surjective

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer