Mathematics

Evaluate the following integrals:
$$\displaystyle \int { \cfrac { a{ x }^{ 2 }+bx+c }{ (x-a)(x-b)(x-c) }  } dx$$ where $$a,b,c$$ are distinct.


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int \dfrac{1}{x^2 (x^4 + 1)^{\frac{3}{4}}}dx$$ is equal to
  • A. $$-\dfrac{(1 + x^4)^{\frac{3}{4}}}{x} + C$$
  • B. $$-\dfrac{(1 + x^4)^{\frac{1}{4}}}{2x} + C$$
  • C. $$-\dfrac{(1 + x^4)^{\frac{1}{4}}}{x^2} + C$$
  • D. $$-\dfrac{(- 1 + x^4)^{\frac{1}{2}}}{x} + C$$
  • E. $$-\dfrac{(1 + x^4)^{\frac{1}{4}}}{x} + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
$$\int \frac{ln(\frac{x-1}{x+1})}{x^{2}-1}dx$$ is equal to

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$x\in \left(0, \dfrac{\pi}{2}\right)$$ then $$\displaystyle \int{e^{\dfrac{-x}{2}}\dfrac{\sqrt{1-\sin x}}{1+cos x}dx}$$=
  • A. $$-e^{\dfrac{-x}{2}}\sec\dfrac{x}{2}+c$$
  • B. $$e^{\dfrac{x}{2}}\sec\dfrac{x}{2}+c$$
  • C. $$-e^{\dfrac{x}{2}}\sec\dfrac{x}{2}+c$$
  • D. $$e^{-\pi/2}\sec\dfrac{x}{2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Integrate the following: $$\dfrac{x-1}{x+1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer